MOSFET – Power, Single, P-Channel -60 V, 16 mΩ, -61 A

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- High Current Capability
- Avalanche Energy Specified
- AEC-Q101 Qualified
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

	0		,		
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	-60	V
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain Cur-		$T_{C} = 25^{\circ}C$	I _D	-61	А
rent $R_{\theta JC}$ (Note 1)	Steady	$T_{\rm C} = 100^{\circ}{\rm C}$		-43	
Power Dissipation $R_{\theta JC}$ (Note 1)	State	$T_{C} = 25^{\circ}C$	PD	118	W
		$T_{\rm C} = 100^{\circ}{\rm C}$		59	
Continuous Drain Current $R_{\theta JA}$ (Notes 1 & 2)	Steady State	$T_A = 25^{\circ}C$	I _D	-11	А
		$T_A = 100^{\circ}C$		-8	
Power Dissipation $R_{\theta JA}$		T _A = 25°C	PD	4.1	W
(Notes 1 & 2)		$T_A = 100^{\circ}C$		2.1	
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \ \mu s$		I _{DM}	-419	А
Current Limited by Package (Note 3)	$T_A = 25^{\circ}C$		I _{Dmaxpkg}	60	A
Operating Junction and Storage Temperature			T _J , T _{stg}	-55 to 175	°C
Source Current (Body Diode)			IS	-118	А
Single Pulse Drain-to-Source Avalanche Energy (T _J = 25°C, V _{DD} = 50 V, V _{GS} = 10 V, $I_{L(pk)}$ = 40 A, L = 0.3 mH, R _G = 25 Ω)			E _{AS}	240	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C

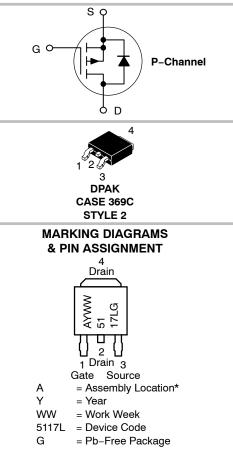
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Drain)	$R_{\theta JC}$	1.3	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	37	

 The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.


3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

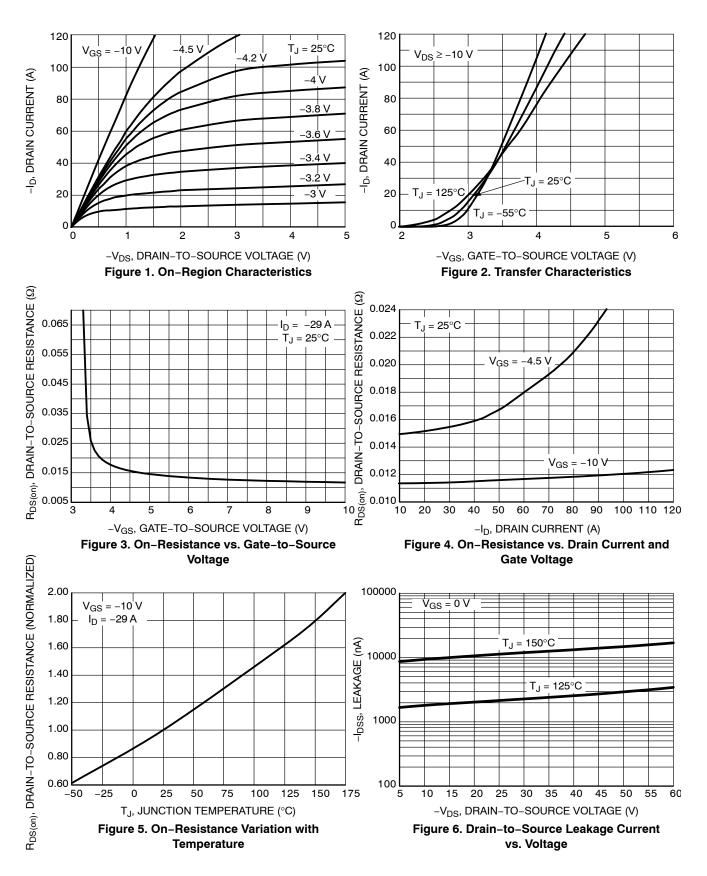
ON Semiconductor®

www.onsemi.com

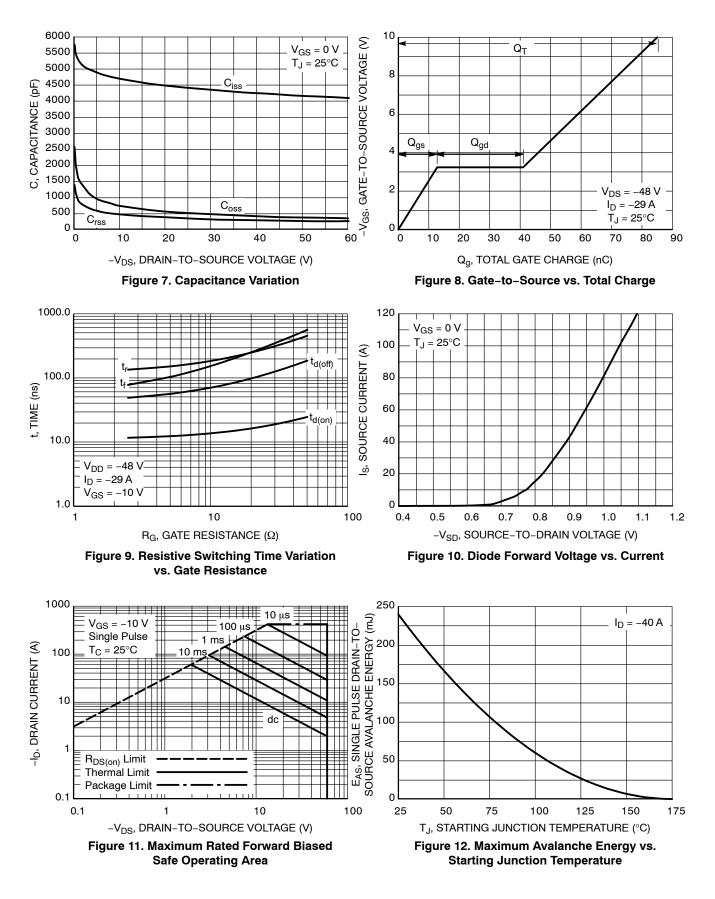
V _{(BR)DSS}	R _{DS(on)}	I _D
–60 V	16 m Ω @ –10 V	-61 A
	22 mΩ @ –4.5 V	-01 A

* The Assembly Location Code (A) is front side optional. In cases where the Assembly Location is stamped in the package bottom (molding ejecter pin), the front side assembly code may be blank.

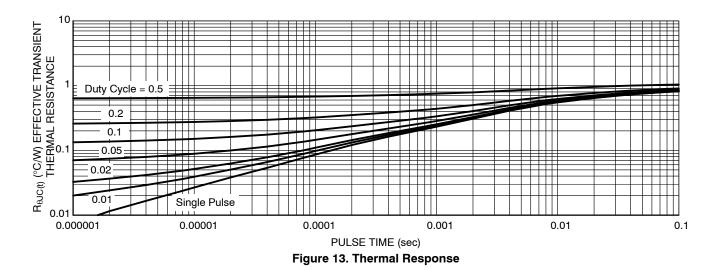
ORDERING INFORMATION					
Device	Package	Shipping [†]			
NVD5117PLT4G	DPAK (Pb–Free)	2500 / Tape & Reel			
NVD5117PLT4G- VF01	DPAK (Pb–Free)	2500 / Tape & Reel			


+ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

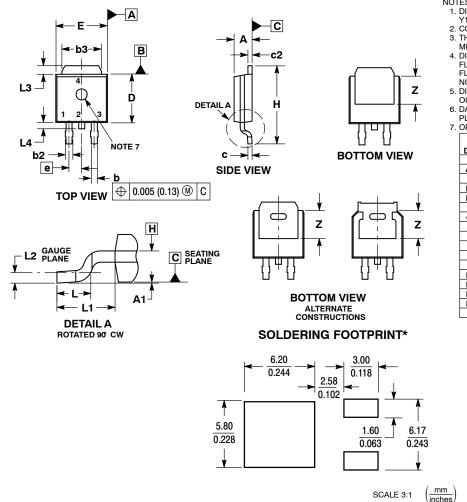
ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS		-	I		•	•	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = -250 μ A		-60			V
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = -60 V	$T_J = 25^{\circ}C$			-1.0	μΑ
			T _J = 125°C			-100	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	_S = ±20 V			±100	nA
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= -250 μA	-1.5		-2.5	V
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = -10 V,	I _D = -29 A		12	16	mΩ
		$V_{GS} = -4.5 V,$	I _D = -29 A		16	22	
Froward Transconductance	9 _{FS}	V _{DS} = -15 V,	l _D = –15 A		30		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{iss}	V _{GS} = 0 V, f =	1.0 MHz,		4800		pF
Output Capacitance	C _{oss}	$V_{\rm DS} = -25 \rm V$			480		
Reverse Transfer Capacitance	C _{rss}		-		320		
Total Gate Charge	Q _{G(TOT)}	V _{DS} = -48 V,	V_{GS} = -4.5 V		49		nC
		$I_{\rm D} = -29 {\rm A}^2$	$V_{GS} = -10 V$		85		
Threshold Gate Charge	Q _{G(TH)}	V_{GS} = -4.5 V, V_{DS} = -48 V, I _D = -29 A			3		
Gate-to-Source Charge	Q _{GS}				13		1
Gate-to-Drain Charge	Q _{GD}				28		
Plateau Voltage	V _{GP}				3.2		V
SWITCHING CHARACTERISTICS (No	tes 4)					•	
Turn-On Delay Time	t _{d(on)}				22		ns
Rise Time	t _r	V_{GS} = -4.5 V, V_{DS} = -48 V, I_{D} = -29 A, R_{G} = 2.5 Ω			195		
Turn-Off Delay Time	t _{d(off)}				50		
Fall Time	t _f				132		
DRAIN-SOURCE DIODE CHARACTE	RISTICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		-0.86	-1.0	V
		$I_{\rm S} = -29$ Å	T _J = 125°C		-0.74		1
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dl _s /dt = 100 A/µs, I _s = -29 A			36		ns
Charge Time	t _a				19		1
Discharge Time	t _b				17		1
Reverse Recovery Charge	Q _{RR}				44		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%.


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS


TYPICAL CHARACTERISTICS

PACKAGE DIMENSIONS

DPAK (SINGLE GAUGE) CASE 369C

ISSUE F

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor are ot designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or d

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14 5M 1994
- Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES.
 - THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS b3, L3 and Z.
- MENSIONS D3, L3 and Z. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
- 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY
- 6. DATUMS A AND B ARE DETERMINED AT DATUM
- PLANE H. 7. OPTIONAL MOLD FEATURE.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.028	0.045	0.72	1.14	
b3	0.180	0.215	4.57	5.46	
c	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
Ш	0.250	0.265	6.35	6.73	
e	0.090 BSC		2.29 BSC		
Н	0.370	0.410	9.40	10.41	
Г	0.055	0.070	1.40	1.78	
L1	0.114 REF		2.90	REF	
L2	0.020 BSC		0.51	BSC	
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Ζ	0.155		3.93		