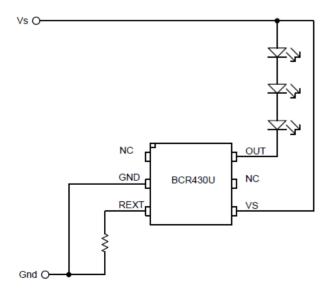


LOW DROPOUT VOLTAGE LINEAR LED DRIVER IC IN SOT26

Description

The BCR430U is a monolithically integrated linear LED controller designed to function as a Constant Current Regulator (CCR) for linear LED driving. The device operates over a voltage range from 5V to 42V and regulates the output LED current up to 100mA, set by an external resistor. It is designed for driving LEDs in strings and will reduce current at increasing temperatures to self-protect. The low voltage drop during current regulation allows efficient driving of LED strings with a range of forward voltages and supply voltage tolerances.

Applications


- LED Strips
- LED Panel Displays
- Architectural and Landscape Lighting
- Mood and Decorative Lighting
- Retail Lighting

Features

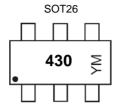
- LED Current Tolerance of ±5% at 95mA Output Current
- Thermal Protection Reduces LED Current at Elevated Temperature
- Low Typical Saturation Voltage of 115mV at 50mA
- 5mA to 100mA Adjustable LED Current with an External Resistor
- 5V to 42V Supply Voltage
- High Power 1W Dissipation in SOT26
- No External Capacitors Required for Stable Operation
- LED Dimming Using PWM
- Parallel Devices to Increase Regulated Current
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q101, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative. https://www.diodes.com/guality/product-definitions/

Mechanical Data

- Case: SOT26
- Case Material: Molded Plastic. "Green" Molding Compound. UL Flammability Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish Matte Tin Plated Leads.
 Solderable per MIL-STD-202, Method 208 (3)
- Weight: 0.018 grams (Approximate)

Ordering Information (Note 4)

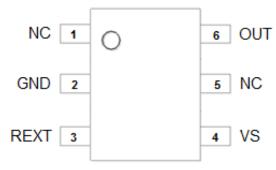
Notes:


Product	Marking	Reel Size (inches)	Tape Width (mm)	Quantity per Reel
BCR430UW6-7	430	7	8	3,000

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.

Marking Information

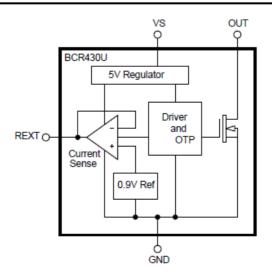

430 = Part Marking (See Ordering Information) YM = Date Code Marking

Y = Year (ex: G = 2019) M = Month (ex: 9 = September)

Date Code Key

Year	2019	9	2020		2021	20	22	2023		2024		2025
Code	G		Н		l		J	K		L		M
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	0	N	D

Pinout Diagram



Top View: SOT26

Pin Description

Pin Number	Pin Name	Function
1	NC	Not Connected
2	GND	Power Ground
3	REXT	External Resistor for Adjusting Output Current
4	VS	Supply Voltage
5	NC	Not Connected
6	OUT	I _{OUT} - Regulated Output Current

Functional Block Diagram

2 of 9 www.diodes.com

Absolute Maximum Ratings (Voltage relative to GND, @TA = +25°C, unless otherwise specified.)

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vs	-0.5	45	V
Output Current	lout	0	100	mA
Output Voltage	Vout	-0.5	42	V
R _{EXT} Current	I _{REXT}	0	0.3	mA
R _{EXT} Voltage	V _{REXT}	-0.5	5	V

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vs	5	42	V
OUT Pin Voltage Range	Vout	0.5	40	V
Output Current (Note 5)	lout	5	100	mA
Ambient Temperature Range (Notes 5 & 6)	T _A	-40	+125	°C
Normal Operation Junction Temperature Range (Note 6)	TJ	-40	+125	°C

Thermal Characteristics (@TA = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit		
Power Dissipation	(Note 7)	D	922	mW	
Power Dissipation	(Note 8)	P_D	993	IIIVV	
Thermal Resistance, Junction to Ambient	(Note 7)	D	136		
Thermal Resistance, Junction to Ambient	(Note 8)	$R_{ hetaJA}$	126	°C/W	
Thermal Resistance, Junction to Lead	(Note 9)	$R_{ heta JL}$	88.5		
Operating Junction Temperature	TJ	-40	+150	°C	
Recommended Storage Temperature	T _S	-55	+165	°C	

ESD Ratings (Note 10)

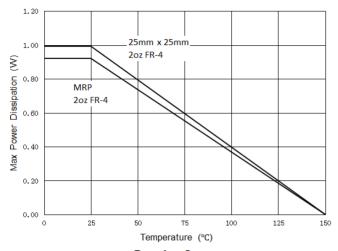
Characteristics	Symbols	Value	Unit	JEDEC Class
Electrostatic Discharge – Human Body Model	НВМ	2000	V	2
Charge Device Model	CDM	1000	V	C5

Notes:

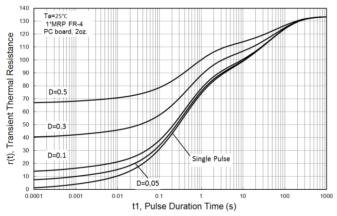
- 5. Subject to power dissipation and junction temperature not exceeding +125°C; beyond T_J = +100°C the LED current may start to fold back reducing the temperature of both the IC and LEDs.
- 6. Device will operate with its junction temperature at +125°C, however at this junction temperature the LED current will have been automatically reduced (folded back) from designed (room temperature/+25°C) level.
- 7. For a device mounted on MRP FR4-PCB; device is measured under still air conditions whilst operating in a steady-state.
- 8. Same as Note 7, except the device is mounted on 25mm × 25mm 2oz copper.
- 9. $R_{\theta,JL}$ = Thermal resistance from junction to solder-point (at the end of the OUT leads). 10. Refer to JEDEC specification JESD22-A114 and JESD22-A115.

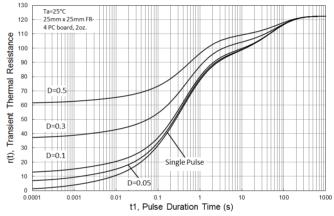
Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)

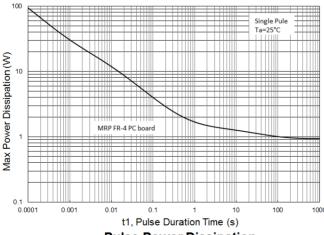
Characteristic	Symbol	Min	Тур	Max	Unit	Test	Condition	
Supply Voltage	Vs	5	-	42	V	_		
Supply Current (Note 11)	I-	180	261	400	μΑ	I _{OUT} = 50mA, V _S = 5V		
Supply Current (Note 11)	I _S		285	500	μΑ	I _{OUT} = 50mA, V _S = 42V		
Quiescent Current	lα	40	67	100	μΑ	V _S = 42V; R _{EXT} =	open	
Output Current range	l _{out}	5		100	mA	_		
		18	20.8	22.7	mA	$R_{EXT} = 30k\Omega$		
Output Current, set by R _{EXT} (Note 11)	l _{out}	45.7	49.1	52.3	mA	R_{EXT} = 12.7k Ω	V _{OUT} > 1V; V _S ≥ 5V	
		90	95.3	100	mA	$R_{EXT} = 6.49k\Omega$		
Driver Voltage Drop (Note 11)	V _{OUT-MIN}	50	115	200	mV	$I_{OUT} = 50mA$	I _{OUT} = 50mA	
REXT Pin Voltage (Note 11)	\/	0.880	0.903	0.960	>	$R_{EXT} = 300k\Omega$		
NEXT FIII Voltage (Note 11)	V_{REXT}	0.875	0.892	0.955	V	$R_{EXT} = 6.49k\Omega$		
Thermal Knee Junction Temperature (Note 12)	T_K	_	+125	_	°C	_		
Output Current Change vs. Temperature	$(\Delta I_{OUT}/I_{OUT})$ $/\Delta T_{J}$	_	0.0032	_	%/°C	$T_J > -40$ °C; $T_J = +120$ °C; $I_{OUT} = 50$ mA		
Output Current Change vs. Supply Voltage or Output Voltage	(ΔΙ _{ΟυΤ} /Ι _{ΟυΤ}) / ΔV	_	0.0055	_	%/V	I _{OUT} = 50mA; 5V < V _S < 42V or 1V < V _{OUT} < 40V		

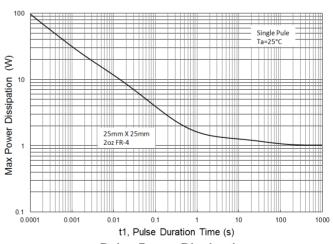

Notes:

^{11.} Measured under pulsed conditions. Pulse width ≤ 300µs. Duty cycle ≤ 2%.

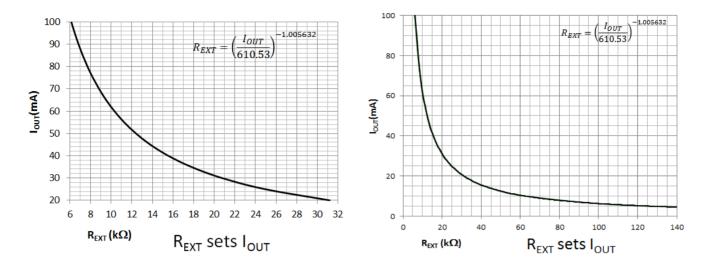

Thermal Knee Junction Temperature is defined as the asymptotic intersection of the +25°C temperature l_{OUT} current and the l_{OUT} current in overtemperature protection mode.

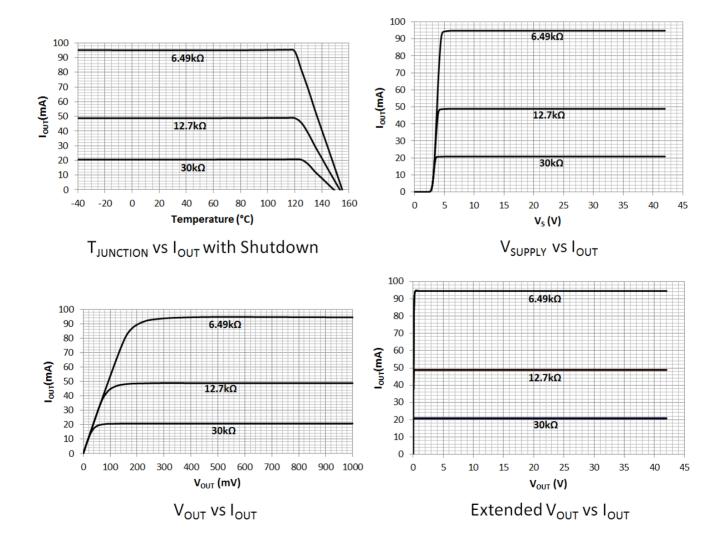

Typical Thermal Characteristics (@T_A = +25°C, unless otherwise specified.)


Derating Curve

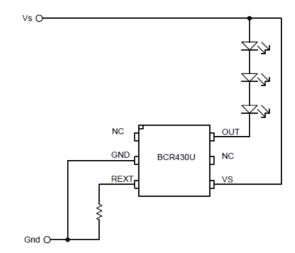

Transient Thermal Resistance

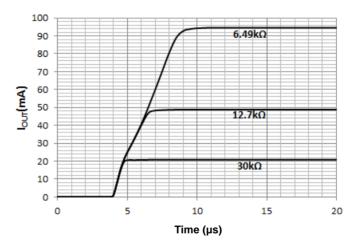
Transient Thermal Resistance


Pulse Power Dissipation

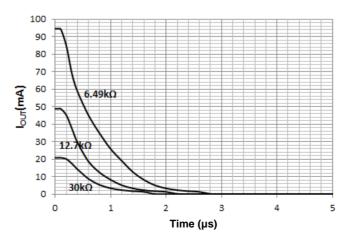

Pulse Power Dissipation

Typical Electrical Characteristics (continued) (@T_A = +25°C, unless otherwise specified.)


The LED current is set according to the resistor value which is connected to the REXT pin.


Application Information

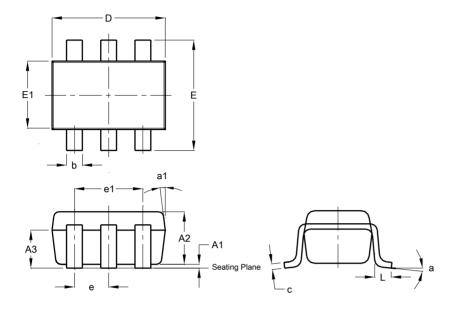
Typical Application Circuit



No external capacitors required for stable operation. Suitable for diming with VS or REXT pin modulation.

 $\textbf{Switching / Timing Information} \ (@V_S = 10V, \ V_{OUT} = 1V, \ 1 kHz, \ 50\% \ Mark-Space \ ratio, \ R_{EXT} \ modulation.)$

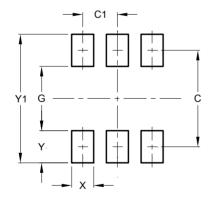
For $R_{EXT}=6.49k\Omega$, $t_R=14\mu s$ at -40°C, $9\mu s$ at +25°C and $7\mu s$ at +110°C. Rise time does not change significantly with LED loads (delay increases by less than $2\mu s$).


Fall time is independent of temperature. Fall time does not change significantly with LED loads.

Package Outline Dimensions

Please see https://www.diodes.com/package-outlines.html for the latest version.

SOT26



	SC	SOT26						
Dim	Min	Max	Тур					
A1	0.013	0.10	0.05					
A2	1.00	1.30	1.10					
A3	0.70	0.80	0.75					
b	0.35	0.50	0.38					
С	0.10	0.20	0.15					
D	2.90	3.10	3.00					
е	-	-	0.95					
e1	-	-	1.90					
Е	2.70	3.00	2.80					
E1	1.50	1.70	1.60					
L	0.35	0.55	0.40					
а	-	-	8°					
a1	-	-	7°					
All	Dimen	sions	in mm					

Suggested Pad Layout

Please see https://www.diodes.com/package-outlines.html for the latest version.

SOT26

Dimensions	Value (in mm)
С	2.40
C1	0.95
G	1.60
Х	0.55
Y	0.80
Y1	3.20

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2019, Diodes Incorporated

www.diodes.com