

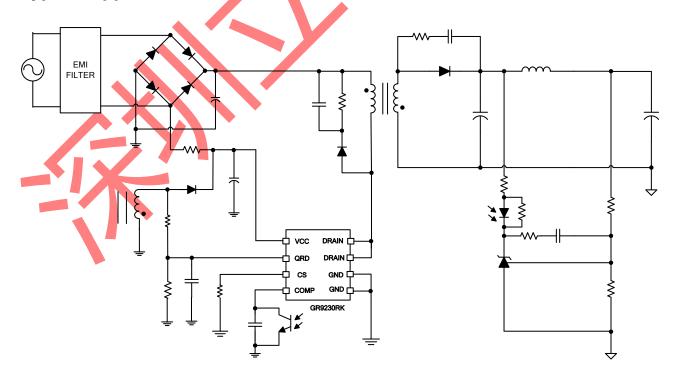
Preliminary GR9230RK

Multi-Mode PWM Power Switch with Integrated Protections

Features

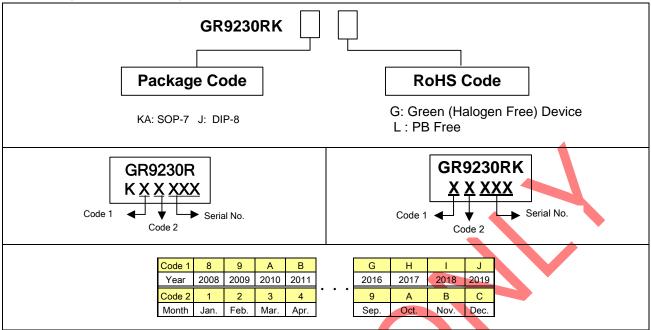
- Built-in 650V Power MOSFET
- Low Start-Up Current (<2uA)
- Multi-Mode Operation
 CCM @ Heavy Load and Low Line
 QR-Like Operation @ Medium Load
 Green mode with Valley Skip at Light Load
 Burst Mode at No Load
- Accurate Over Current Protection
- Adjustment OVP on QRD Pin
- Output Short Protection
- Soft Driver
- 8ms Soft-start
- OVP (Over Voltage Protection) on VCC Pin
- On Chip OTP Protection
- SOP-7 and DIP-8 Package with Few External Components Needed

Description

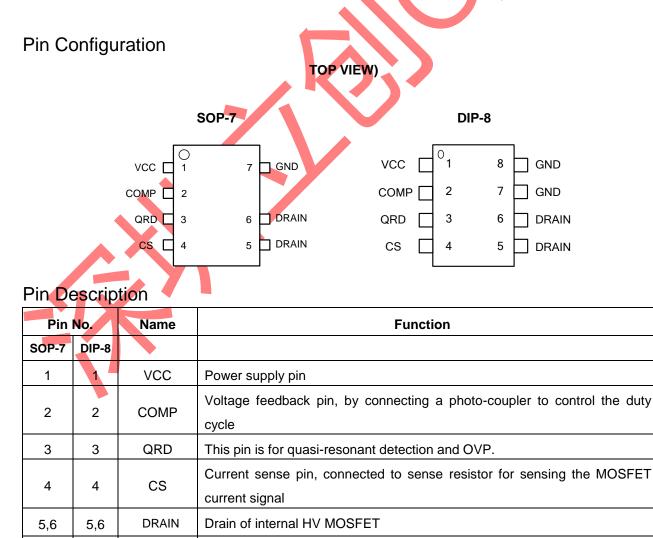

The GR9230RK integrates a high performance multi-mode (QR/CCM) PWM controller and a high voltage power MOSFET of 650V. It minimizes the components counts and is available in a tiny SOP-7 and DIP-8 package. Those make it an ideal design for low cost application. It provides functions of low startup current, green- mode power-saving operation, VCC over-voltage protection, and QRD pin abnormal conditions sensing to prevent the circuit being damaged from the abnormal conditions.

Applications

Switching AC/DC power adapter


SMPS Power Supply

Typical Application Information



Ordering and Marking Information

Grenergy OPTO Inc. reserves the right to make changes to improve reliability or manufacture ability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders.

Ground reference pin

GND

7

7,8

Absolute Maximum Ratings

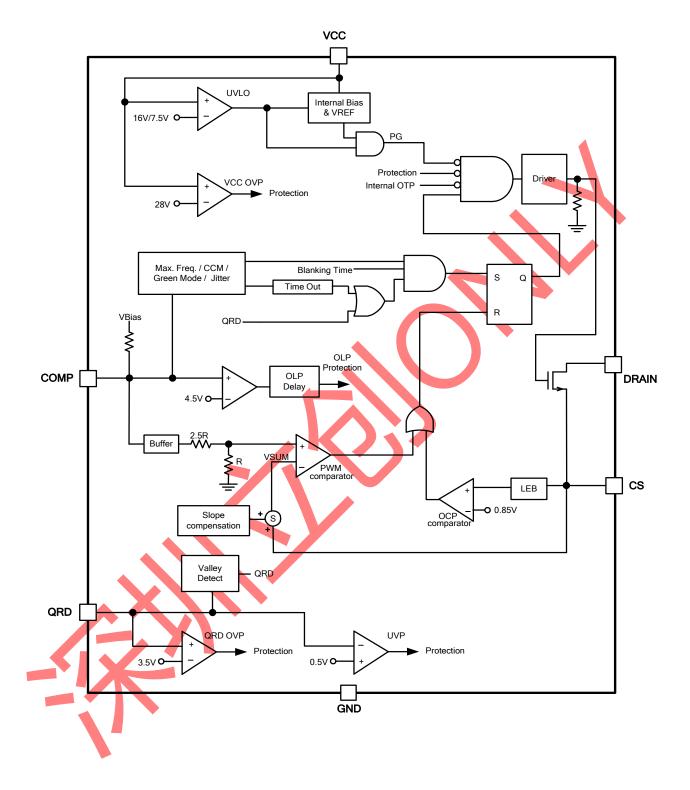
Drain Voltage	0.3V ~ 650V
Supply voltage VCC	30V
COMP, CS, QRD	0.3~6.0V
Junction temperature	 150 ℃
Storage temperature range	5℃ ~ 150 ℃
Lead temperature (SOP-7/DIP-8, soldering, 10 sec)	 230 ℃
Lead temperature (All Pb free packages, soldering, 10 sec)	 260 ℃
ESD, human body model	2.5KV
ESD, machine model	250V

Caution: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed and may cause permanent damage to the IC. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the Electrical Characteristics section of the specification is not implied. The "Electrical Characteristics" table defines the conditions for actual device operation. Exposure to absolute maximum rated conditions for extended periods may affect device reliability

Recommended Operating Conditions

Item	Min.	Max.	Unit
Operating Junction temperature	-40	125	°C
Operating ambient temperature	-40	85	°C
Start Up Resistor (AC Half side)	540k	2.2M	Ω
Supply voltage VCC	9.5	26.5	V
VCC Capacitor	2.2	10	μF
COMP pin paralleling capacitor	1	33	nF
QRD Pin paralleling capacitor	4.7	33	pF

Note:


- Not to exceed the maximum junction temperature of the IC, this relates to the operating power of the IC and the thermal resistance of the IC-package as above.
- The small signal components should be placed to IC pin as possible.
- •It's essential to connect VCC pin with a SMD ceramic capacitor (0.1μF~0.47μF) to filter out the undesired switching noise for stable operation.
- Suggest using electrolytic capacitor or 1206 SMD ceramic capacitor as the VCC capacitor to avoid the acoustic noise from MLCC piezoelectric effect.
- Connecting a capacitor to COMP pin is also essential to filter out the undesired switching noise for stable operation.
- Connecting a capacitor (4.7~33pF) to QRD pin is also essential to filter out the undesired switching noise for stable operation.

Protection Mode

CCM Switching Frequency	OLP/UVP	VCC OVP	QRD OVP
65kHz	Auto recovery	Auto recovery	Auto recovery

Block Diagram

grenergy.	Prelin	ninar	y G	R923	80RK
Electrical Characteristics (TA = +25°C unless otherwise	se stated, V	CC = 15	.0V)		
Parameter		Min.	Тур.	Max.	Unit
SUPPLY VOLTAGE (VCC Pin)	-				
Startup current VCC=UVLO ON-0.1V		0.75	1.5	2	uA
Operating current, Vcomp = 0V			0.65		mA
Operating current, Vcomp = 2.5V			1.2		mA
Operating current , protection tripped (VCC OVP, OLP, QRD OVP/UVP)			0.65		mA
UVLO-OFF		7.0	7.5	8.0	V
UVLO-ON		15.2	16.0	16.8	V
VCC Mode Entry Point			8.25		V
Hysteresis			0.25		V
OVP level on VCC pin		27	28	29	V
OVP level on VCC pin Debounce Time*			128		μs
VOLTAGE FEEDBACK (COMP Pin)					
Short circuit current, Vcomp = 0V			230		uA
Open loop voltage, COMP pin open		4.8	5.2	5.6	V
Maximum Frequency Threshold, V _{SMAX} *			1.7		V
Green Mode Threshold*			1.35		V
CURRENT SENSING (CS Pin)			-		
Maximum input voltage at Low Line, Vcsmax(ON Time>6us*)		0.80	0.85	0.90	V
Maximum input voltage at High Line, VcsmaxL (ON Time<5us*)		0.65	0.7	0.75	V
Internal Slope Compensation*			0.3		V
Leading-edge blanking time			350		ns
Input impedance		1			MΩ
Delay to Output*			100		ns
QRD (QRD Pin)		-		-	-
Upper Clamp Level, IZCD=0.5mA			4.6		V
Lower Clamp Level, IZCD=-0.3mA			-0.3		V
QRD Blanking Time			2.5		μs
QRD OVP		3.38	3.5	3.62	V
OVP De-bounce Time*			128		μs
UVP Level			0.5		V
UVP De-bounce Time after start-up*			8		ms

Parameter		Min.	Тур.	Max.	Unit
OSCILLATOR				•	
CCM Frequency		60	65	70	kHz
Maximum Frequency Clamp, Vcomp>V _{SMAX} *			69		kHz
Green Mode Frequency			25		kHz
Jitter Frequency (CCM, Vcomp>Vsmax)			±8		%
Soft Start Time (CS Pin)		•	•		
Soft Start Time*			8		ms
PWM SECTION					
Maximum On Time (CCM Fs=70kHz)			10.8		μs
Open Loop Protection (COMP Pin)					
OLP trip level, Vcomp		4.2	4.35	4.5	V
OLP delay time after start-up			69	84	ms
Internal OTP (Guaranteed by design)					
OTP*			145		°C
Hysteresis*			30		°C
MOSFET SECTION					
BVdss Vgs=0		650			V
Rds (on)			2		Ω
*Guaranteed by Design.					

*Guaranteed by Design.

Typical Performance Characteristics

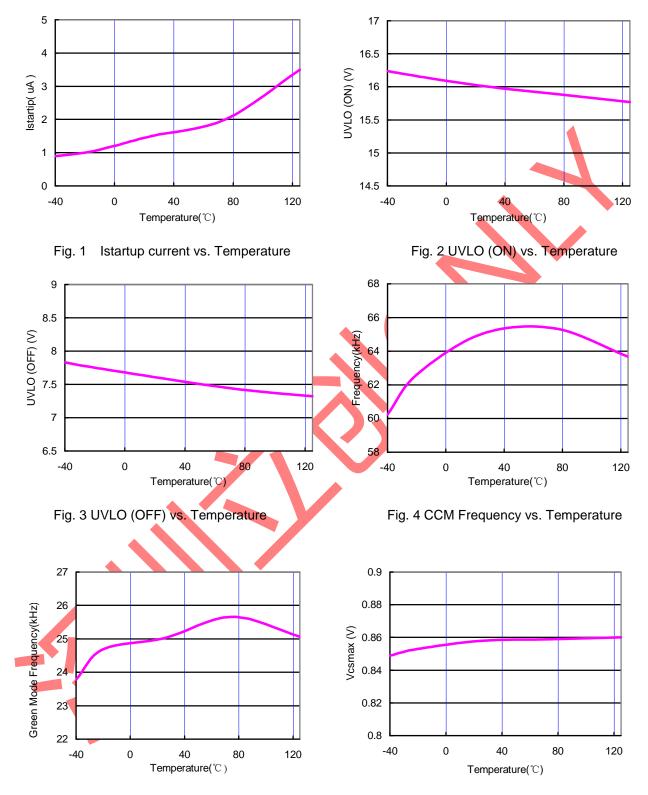


Fig. 5 Green Mode Frequency vs. Temperature

Fig. 6 Vcsmax vs. Temperature

Typical Performance Characteristics

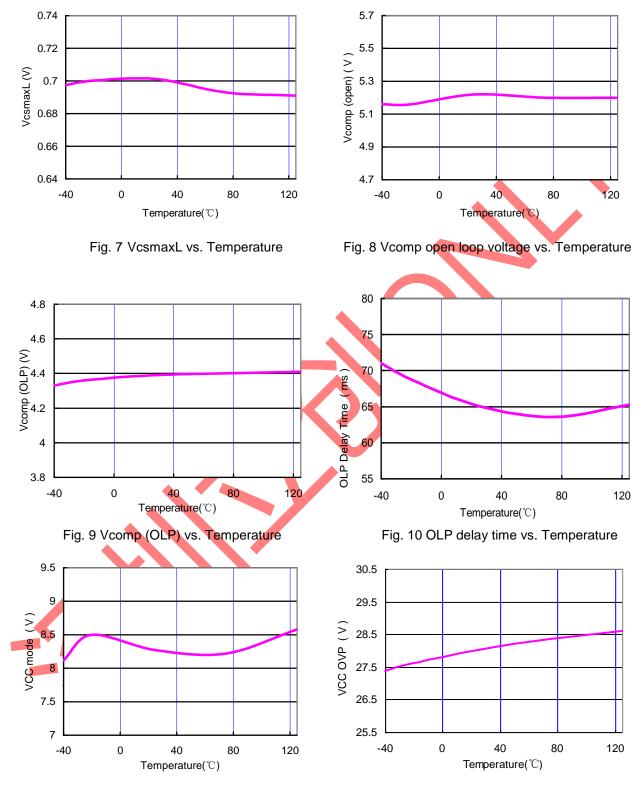


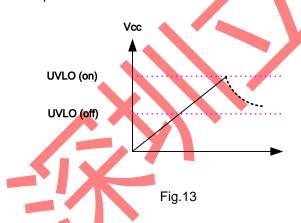
Fig. 11 VCC Mode (Entry) vs. Temperature

Fig. 12 VCC OVP vs. Temperature

Preliminary GR9230RK

Application Information

Overview

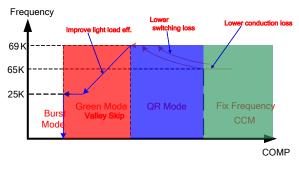

The GR9230RK integrates a high performance multi-mode (QR/CCM) PWM controller and a high voltage power MOSFET of 650V. This results in a low-cost solution for low power AC/DC adapters. It integrated more functions to reduce the external components counts and the size. Its major features are described as below.

Start-up Current

The typical start-up current is 1.5uA. Very low start-up current allows the PWM power switch to increase the value of start-up resistor and then reduce the power dissipation on it.

Under-voltage Lockout (UVLO)

A hysteresis UVLO comparator is implemented in GR9230RK, then the turn-on and turn-off thresholds level are fixed at 16V and 7.5V respectively. This hysteresis shown in Fig.13 ensures that the start-up capacitor will be adequate to supply the chip during start-up.


Multi-Mode Operation for High Efficiency GR9230RK is a multi-mode QR/CCM controller. The controller changes the mode of operation according to switching frequency and comp pin voltage, as shown in the Fig.14. At the normal operating condition, the IC operates in QR mode to reduce the switching loss. In the QR mode, the frequency varies depending on the line voltage and the load conditions. As the output load current is

increased, the on-time T_{ON} is increased, and thus the switching frequency decreases. If the switching frequency lowers than 65kHz frequency, the controller adaptively transitions to a CCM mode. Thus, small size transformer can be used with high power conversion efficiency.

As the output load current is decreased, the on-time T_{ON} is decreased, and thus the switching frequency increases. If the switching frequency increases till over the clamp of 69kHz, **IC** will skip the first valley to turn on in 2nd or 3rd valley.

At light load conditional, the VCOMP is lower than V_{SG1} and the system operates in green mode for high power conversion efficiency. The max switching frequency clamp will start to linearly decrease from 69kHz to 25kHz. The valley switching characteristic is still preserved in green mode. That is, when load decreases, the system automatically skip more and more valleys and the switching frequency is thus reduced.

At zero load or very light load conditions (Vcomp< Burst mode voltage), the gate output pin of the GR9230RK will be disabled immediately under such condition, enhancing power saving.

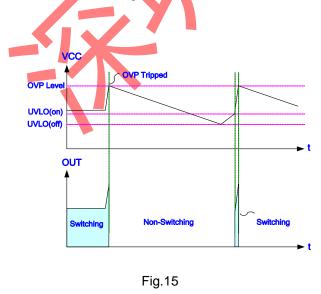
Quasi-Resonant Detection

The QR detection block will detect auxiliary winding voltage to turn on the MOSFET. The time-out2 generates a MOSFET turn-on signal as the driver output drops to low level for more than 150µs (Time Out) with the falling

edge of the driver output.

Leading-edge Blanking (LEB)

Each time the power MOSFET is switched on, a turn-on spike will inevitably occur at the sense resistor. To avoid fault trigger, a leading-edge blanking time is built in. During this blanking period, the current-limit comparator is disabled and cannot switch off the gate driver.

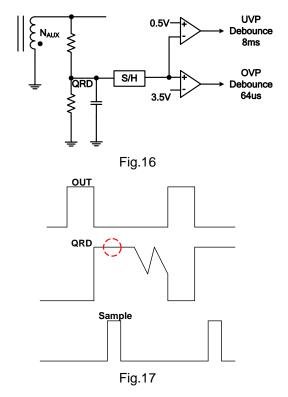

Internal Slope Compensation

A built-in slope compensation circuit is constructed in GR9230RK. When the switch is on, a ramp voltage is added to the sensed voltage across the CS pin, which helps to stabilize the system and prevent sub-harmonic oscillations.

Over-voltage Protection (OVP) on VCC Auto

Recovery mode

To prevent power MOSFET from being damaged, the GR9230RK is implemented an OVP function on VCC. When the VCC voltage is higher than the OVP threshold voltage, the output gate driver circuit will be shut down immediately to stop the switching of power MOSFET. The VCC OVP function is an auto-recovery type protection. If OVP happens, the pulses will be stopped and recover at the next UVLO on. The GR9230RK is working in a hiccup mode as shown in Fig. 15.


Output OVP on QRD - Auto Recovery mode

An output overvoltage protection is implemented in the GR9230RK, as shown in Fig. 16 and 17. It senses the auxiliary voltage via the divided resistors. The overvoltage protection works by sampling the plateau voltage after a delay time. The sampling voltage level is compared with internal threshold voltage 3.5V. If the sampling voltage exceeds the QRD OVP trip level, the QRD OVP circuit switches the power MOSFET off. The QRD OVP function is an auto-recovery type protection. The de-bounce time of QRD OVP is 128µs to prevent incorrect OVP detection which might occur during ESD or lightning events.

Output Under-voltage Protection (UVP) on QRD-

Auto Recovery mode

To protect the circuit from damage due to output short condition, an auto-recovery type of UVP protection is implemented for it. If the QRD voltage declines below 0.5V for over the 8ms, the protection will be activated to turn off the gate until the next UVLO-ON.

Preliminary GR9230RK

OLP (Open Loop Protection) – Auto Recovery

mode

The GR9230RK has open loop protection function. An internal circuit detects the Vcomp level, when the Vcomp is larger than an OLP threshold level and continues over OLP delay time, the protection will be activated and then turn off the gate output to stop the switching of power circuit. Then VCC decreases below UVLO off level, the controller resets again.

Gate Clamp/Soft Driving

Driver output is clamped by an internal 13.5V clamping circuit to prevent from undesired over-voltage gate signals. And under the conditions listed below, the gate output will turn off immediately to protect the power circuit. The GR9230RK also has soft driving function to minimize EMI.

VCC Mode Operation

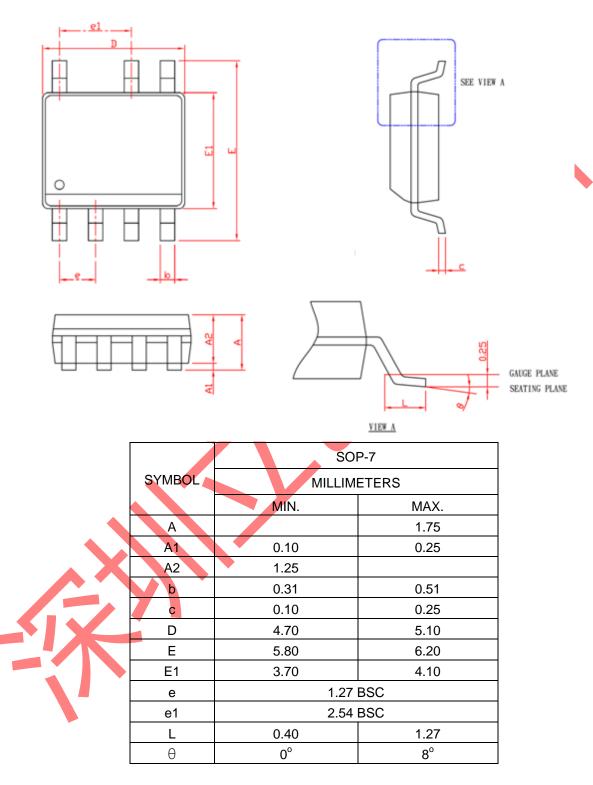
In order to avoid the output voltage shut down by load changing from full to no load, the GR9230RK is built-in the VCC mode function. When the load from full changes to no load, the output voltage will overshoot and pull low the COMP pin by feedback loop (Into burst mode). Thus the duty will disappear

and no power delivers to the secondary. If there is without any mechanism to prevent this situation, the VCC pin voltage will down to UVLO off and the IC will re-start again. In the GR9230RK, before the VCC is down to UVLO off, it will force the OUT pin outputs the specified duty to pull the VCC higher than UVLO off.

The VCC mode function is used to prevent the output re-start again when load changes. So never let the system operate on the VCC mode at no load. The system should operate on burst mode, otherwise the input power maybe become larger.

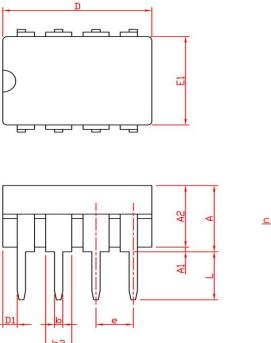
Fault Protection

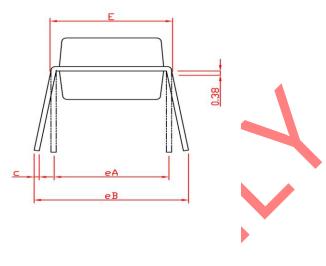
the


There are several critical protections integrated in

. CS pin floating . Comp pin shorting . Comp pin floating . QRD pin shorting

Package Information

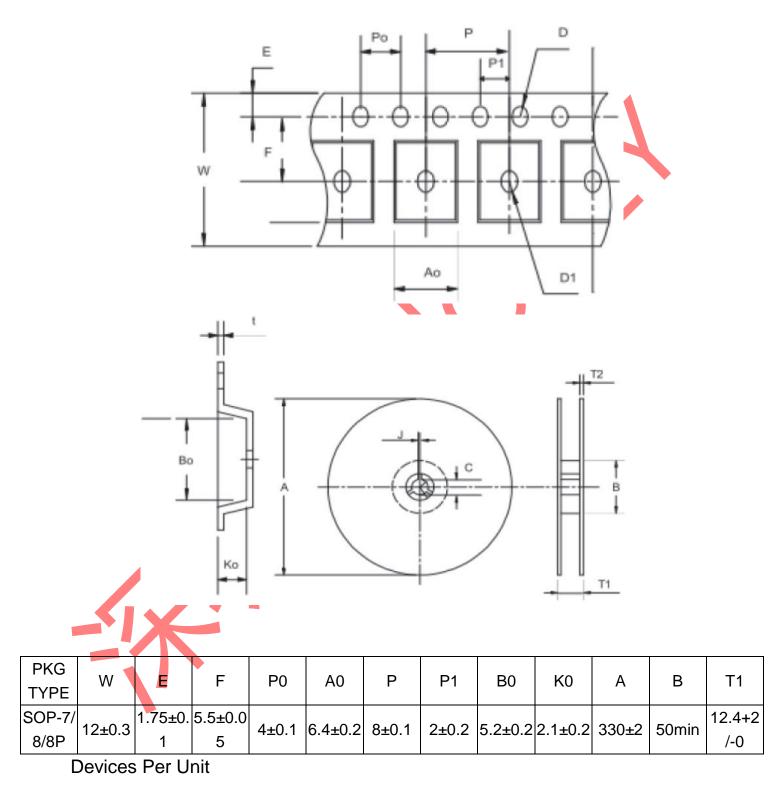

SOP-7



- Note: 1. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side.
 - 2. Dimension "E" does not include inter-lead flash or protrusions. Inter-lead flash and protrusions shall not exceed 10 mil per side.

DIP-8

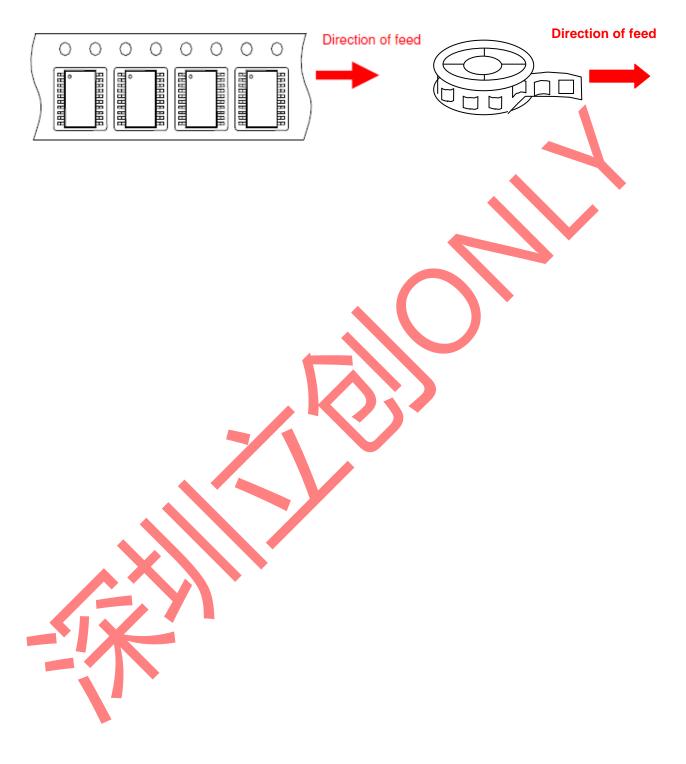
	DIP-8				
SYMBOL	MILLIMETERS		INCHES		
	MIN.	MAX.	MIN.	MAX.	
А		5.33		0.210	
A1	0.38		0.015		
A2	2.92	4.95	0.115	0.195	
b	0.36	0.56	0.014	0.022	
b2	1.14	1.78	0.045	0.070	
С	0.20	0.35	0.008	0.014	
D	9.01	10.16	0.355	0.400	
D1	0.13		0.005		
E	7.62	8.26	0.300	0.325	
E1	6.10	7.11	0.240	0.280	
е	2.54 BSC		0.100	BSC	
eA	7.62 BSC		0.300	BSC	
eB		10.92		0.430	
1	2.92	3.81	0.115	0.150	


Note: 1. Followed from JEDEC MS-001 BA.

2. Dimension D, D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 10 mil.

Carrier Tape & Reel Dimensions

SOP-7



Application	Carrier Width	Devices Per Reel
SOP- 7	12	2500

Tape and Specification Reel

SOP-7

Grenergy OPTO, Inc. reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.