

600V 60A Ultrafast Recovery Diode

Description

FRED from Lonten utilizes advanced processing techniques to achieve ultra-fast recovery times and higher forward current. Its soft recovery characteristics and high reliability suit for wide industrial applications.

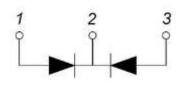
Features

- Ultra-fast Recovery Time
- ◆ Soft Recovery Characteristics
- Low Recovery Loss
- ♦ Low Forward Voltage
- ♦ High Surge Current Capability
- ♦ Low Leakage Current

Applications

- Freewheeling, Clamp
- ♦ Inversion Welder
- ◆ PFC
- Plating Power Supply
- Ultrasonic Cleaner and Welder
- ♦ Converter & Chopper
- ♦ UPS

Product Summary


600V

60A

FRED

TO-247 Pin Configuration

Absolute Maximum Ratings $T_c = 25$ °C unless otherwise noted

Parameter	Symbol	Value	Unit
Maximum D.C. Reverse Voltage	V _R	600	V
Maximum Repetitive Reverse Voltage	V _{RRM}	600	V
Average Forward Current(Tc = 110 °C,Per Diode)	1	30	A
Average Forward Current(Tc = 110 °C,Per Package)	- I _{F(AV)}	60	Α
RMS Forward Current(Tc = 110 °C)	I _{F(RMS)}	42	Α
Non-Repetitive Surge Forward Current(TJ =	I _{FSM}	260	А
45°C,t=10ms,50Hz,Sine)			
Power Dissipation	P _D	156	W
Junction Temperature Range	T _J	-55 to +150	$^{\circ}$
Storage Temperature Range	T _{STG}	-55 to +150	$^{\circ}$
Module-to-Sink(Recommended M3)	Torque	1.1	Nm
	Weight	6.0	g

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	R _{0JC}	0.8	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking
LMB60U60W4	TO-247	LMB60U60W4

Electrical Characteristics T_J = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{RM} Reverse Leakage Current	Davis de la characteria Comment	V _R =600V			10	uA
	V _R =600V, T _J =125℃			10	mA	
V _F Forward Voltage	Forward Voltage	I _F =30A		2.0	2.4	V
	I _F =30A, T _J =125℃		1.7		V	
t _{rr} Reverse Recovery Time	Poverse Possvery Time	I _F =1A, V _R =30V,		20	25	20
	di _F /d _t =-200A/us		20	25	ns	
t _{rr}	Reverse Recovery Time	VR=300V, IF=30A		35		ns
I _{RRM}	Max. Reverse Recovery Current	di_F/d_t =-200A/us, T_J =25 $^{\circ}$ C		3		Α
t _{rr}	Reverse Recovery Time	V _R =300V, I _F =30A di _F /d _t =-200A/us, T _J =125°C		125		ns
I _{RRM}	Max. Reverse Recovery Current			6		Α
S				1.9		

Electrical Characteristics Diagrams

Figure 1. Forward Voltage Drop vs Forward Current

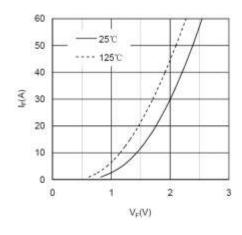


Figure 2. Reverse Recovery Time vs diF/dt

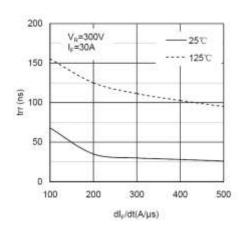


Figure 3. Reverse Recovery Current vs diF/dt

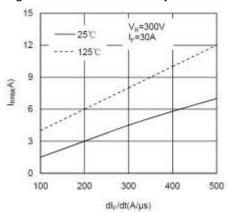


Figure 5. Forward current vs Case temperature

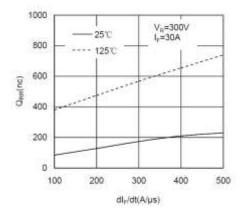


Figure 4. Reverse Recovery Charge vs diF/dt

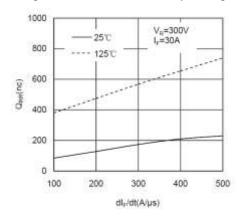


Figure 6. Transient Thermal Impedance

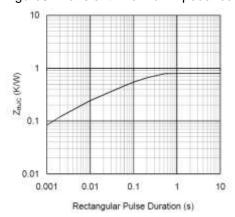
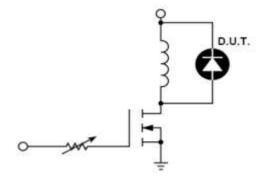
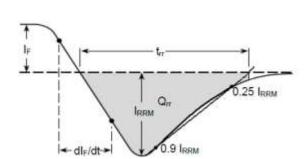
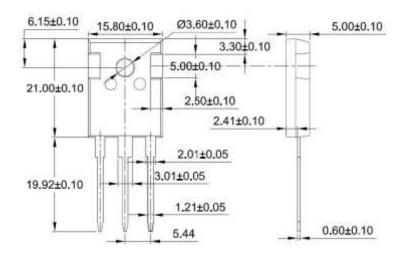
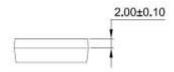
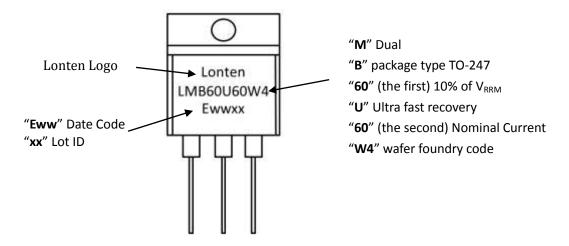




Figure 7. Diode Reverse Recovery Test Circuit and Waveform






Figure 8. Package Outline

Dimensions in Millimeters

Marking Information

Version 1.0, 2016 4 www.lonten.cc

Disclaimer

The content specified herein is for the purpose of introducing LONTEN's products (hereinafter "Products"). The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

LONTEN does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of the Products or technical information described in this document.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). LONTEN shall bear no responsibility in any way for use of any of the Products for the above special purposes.

Although LONTEN endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a LONTEN product.

The content specified herein is subject to change for improvement without notice. When using a LONTEN product, be sure to obtain the latest specifications.

Version 1.0, 2016 5 www.lonten.cc