

Unipolar Hall Effect Switches

Description

The SC44L Hall-Effect switch series is monolithic integrated circuits with tighter magnetic specifications, designed to operate continuously over extended temperatures to +150°C, and are more stable with both temperature and supply voltage changes. The negative compensation slope is optimized to match the negative temperature coefficient of low cost magnets.

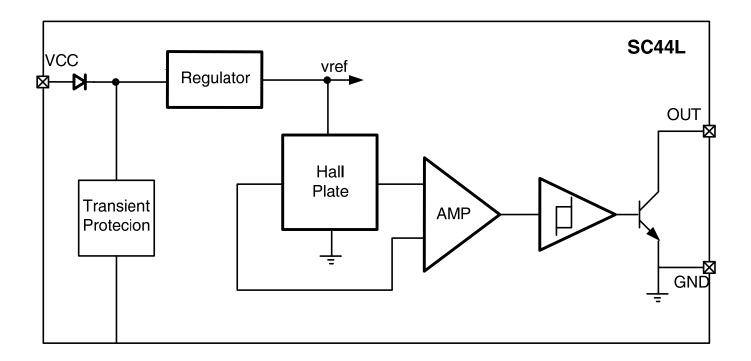
Each device includes a voltage regulator for operation with supply voltages of 3.8 to 40V volts, quadratic Hall-voltage generator, temperature compensation circuitry, small-signal amplifier, Schmitt trigger, and an open-collector output to sink up to 40mA.

Features and Benefits

- 3.8 to 40V supply voltage
- High transient voltage protection
- 40mA sinking capability
- High ESD rating
- 3-pin SIP package
- RoHs compliant

Potential Applications

- Brushless DC motor
- Position sensor
- Motor and fan control
- Auto-motive transmission position


Device Information

Part Number	Packing	Mounting	Ambient, T _A	Marking
SC44L	1000 pieces/Bag	SIP3	-40℃ to 150℃	44L

Block Diagram

The circuit includes Hall generator, amplifier and Schmitt-Trigger on one chip. The internal reference provides the supply voltage for the components. A magnetic field perpendicular to the chip surface induces a voltage at the Hall probe. This voltage is amplified and switches as a Schmitt-Trigger with open-collector output. A protection diode against reverse power supply is integrated.

Pin Description

3-Terminal SIP UA Package (Top View)

Terminal				
Name	Number	Туре	Description	
VDD	1	PWR	3.8 to 40 V power supply	
GND	2	Ground	Ground terminal	
OUT	3	Output	Open-drain output	

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

Parameter	Symbol	Min.	Max.	Units
Power supply voltage	Vcc	-40 ⁽²⁾	60	V
Output terminal voltage	Vout	-0.5	60	٧
Output terminal current sink	Isink	0	50	mA
Operating ambient temperature	T _A	-40	150	${\mathbb C}$
Maximum junction temperature	TJ	-55	165	${\mathbb C}$
Storage temperature	Тѕтс	-65	175	$^{\circ}$ C

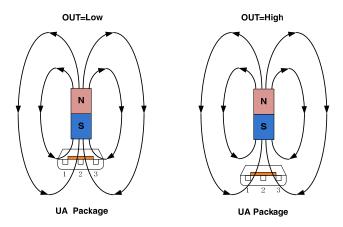
⁽¹⁾Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

⁽²⁾Ensured by design.

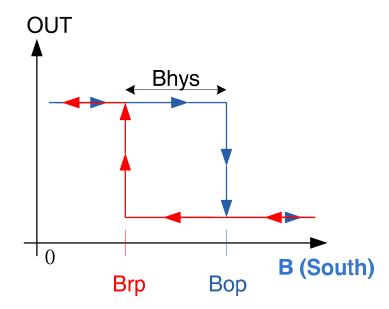
Electrical and magnetic Specifications

over operating free-air temperature range ($V_{CC} = 5V$, unless otherwise noted)

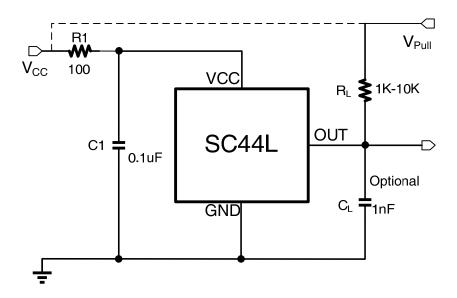
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Vcc	Operating voltage ⁽¹⁾	T _J < T _J (Max.)	3.8		40	V
Vccr	Reverse supply voltage	T _A =25℃	-40	-		V
Icc	Operating supply current	V _{CC} =3.8 to 40 V		4.0	10	mA
IQL	Off-state leakage current	Output Hi-Z		I	3	uA
Vsat	Output saturation voltage	IQ=20mA, T _A =25℃	-	I	300	mV
tr	Output rise time	R1=1Kohm Co=20pF			1.5	uS
t f	Output fall time	R1=1Kohm Co=20pF			1.5	uS
Magnetic Characteristics						
f _{BW}	Bandwidth				100	kHz
Bop	Operated point	T _A =25℃	9.5	12.0	16.5	mT ⁽²⁾
B _{RP}	Release point	1A-25 C	5.5	9.5	14.0	mT
Внуѕ	Hysteresis	Bop - Brp		2.5		mT


⁽¹⁾ Maximum voltage must be adjusted for power dissipation and junction temperature, see Thermal Characteristics

^{(2) 1}mT=10Gs


Field Direction Definition

A positive magnetic field is defined as a South pole near the marked side of the package.


Transfer Function

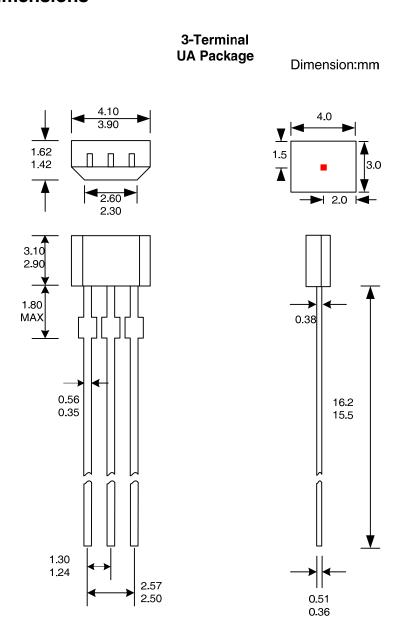
Powering-on the device in the hysteresis region, less than B_{OP} and higher than B_{RP} , allows an indeterminate output state. The correct state is attained after the first excursion beyond B_{OP} or B_{RP} . If the field strength is greater than B_{OP} , then the output is pulled low. If the field strength is less than B_{RP} , the output is released.

Typical Application

The SC44L contains an on-chip voltage regulator and can operate over a wide supply voltage range. In applications that operate the device from an unregulated power supply, transient protection must be added externally. For applications using a regulated line, EMI/RFI protection may still be required. R1 is for improved CI performance, and could be 100 or 200 Ω typically.

The SC44L device output stage uses an open-drain NPN transistor, and it is rated to sink up to 40mA of current. For proper operation, calculate the value of the pull-up resistor R_L is required. The size of R_L is a tradeoff between OUT rise time and the load capacity when OUT is pulled low. A lower current is generally better, however faster transitions and bandwidth require a smaller resistor for faster switching.

Select a vaule for C_L based on the system bandwidth specifications as:


$$2 \times f(Hz) = \frac{1}{2\pi \times R \times C}$$

Most applications do not require this C_L filtering capacitor.

 V_{PULL} is not restricted to V_{CC} , and could be connected to other voltage reference. The allowable voltage range of this terminal is specified in the Absolute Maximum Ratings.

Mechanical Dimensions

Notes:

- 1. Exact body and lead configuration at vendor's option within limits shown.
- 2. Height does not include mold gate flash.

Where no tolerance is specified, dimension is nominal.