

Low Noise Bottom Port MEMS Microphone

DESCRIPTION

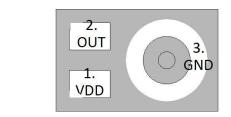
The ZTS6056 is a high quality, low cost, low power analog output bottom-ported omni-directional MEMS microphone. ZTS6056 consists of a MEMS microphone element and an preamplifier. ZTS6056 has a high SNR and flat wideband frequency response, resulting in natural sound with high intelligibility. Extra EMI filter for RF noise attenuation is built inside. Due to the built-in filter, ZTS6056 shows high immunity to EMI.

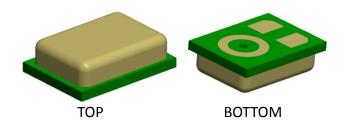
The ZTS6056 is available in a thin 2.75mm \times 1.85mm \times 0.9mm surface-mount package. It is reflow solder compatible with no sensitivity degradation. The ZTS6056 is halide free.

APPLICATIONS

- Mobile telephones
- Smart phones
- PDAs
- Digital video cameras
- Portable media devices with audio input

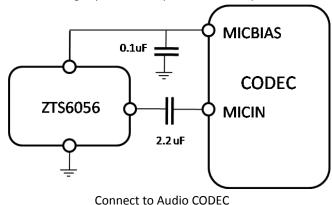
ORDERING INFORMATION


PART	RoHS	Ship, Quantity
ZTS6056	Yes	Tape and Reel, 5.2K


FEATURES

- Small package
- Flat Frequency Response SNR of 62.5dBA
- Low Current
- MaxRF protection
- Ultra-Stable Performance
- Standard SMD Reflow
- Omni-directional

Pins Configuration and Description


^a Bottom View

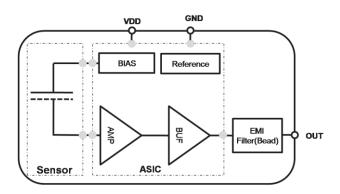
Typical Applications

The ZTS6056 output can be connected to a codec microphone input or to a high input impedance gain stage. A dc-blocking capacitor is required at the output of the microphone.

Note:

All Ground pins must be connected to ground.

Capacitors near the microphone should not contain Class 2 dielectrics.



Absolute Maximum Ratings

V _{DD} to Ground	0.5V to +5V
OUT to Ground	0.3V to V _{DD} +0.3V
Input Current to Any Pin	± 5 mA
Temperature Range	40°C to +100°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Functional Block Diagram

Electro-Static Discharge Sensitivity

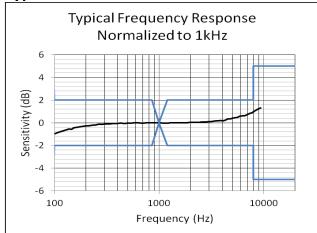
This integrated circuit can be damaged by ESD. It is recommended that all integrated circuits be handled with proper precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure.

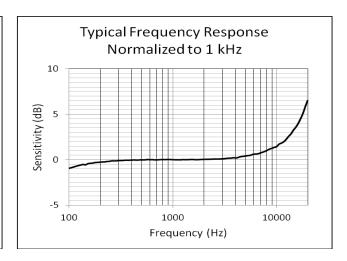
Pins Description

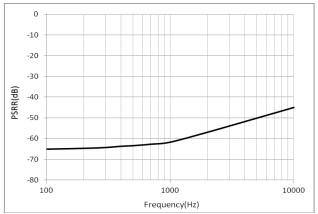
Pin	Symbol	Description
1	VDD	Power Supply.
2	OUT	Analog output signal.
3	GND	Ground

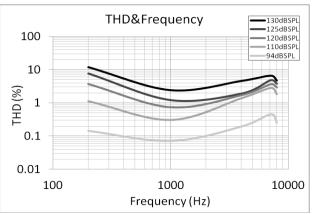
Specifications

(TEST CONDITIONS: 23 ±2°C, 55±20% R.H., $V_{DD}(min) \le V_{DD} \le V_{DD}(max)$, no load, unless otherwise indicated.)


PARAMETER	Symbol	CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage ¹	V_{DD}		1.5	-	3.6	V
Supply Current ^{1,2}	I _{DD}		-	65	100	μΑ
Sensitivity ¹	S	94 dB SPL @ 1 kHz	-39	-38	-37	dBV/Pa
Signal to Noise Ratio	SNR	94 dB SPL @ 1 kHz, A-weighted	-	62.5	-	dB(A)
Total Harmonic Distortion	THD	94 dB SPL @ 1 kHz.		0.2	0.5	%
Acoustic Overload Point	АОР	P 10% THD @ 1 kHz,S = Typ, V_{DD} = 3.6V, $R_{load} > 2 k\Omega$		123	-	dB SPL
Power Supply Rejection Ratio	PSRR	200mVpp sinewave @ 1 kHz, $V_{DD} = 1.8V$	-	65	-	dB
Power Supply Rejection	PSR	100 mVpp square wave @ 217 Hz, $V_{DD} = 1.8V$, A-weighted	-	-91	-	dBV(A)
DC Output		V _{DD} = 1.5V	-	0.8	-	V
Output Impedance	Z _{OUT}	@ 1 kHz	-	-	400	Ω
Directivity				Omni-di	rectional	
Polarity		Increasing sound pressure	Inci	reasing ou	tput press	ure

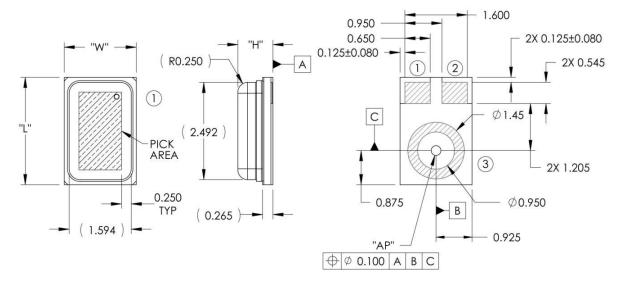

Note:


¹ 100% tested


 $^{^{2}}$ Maximum specifications are measured at maximum V_{DD} . Typical specifications are measured at V_{DD} = 1.8V.

Typical Performance Characteristics

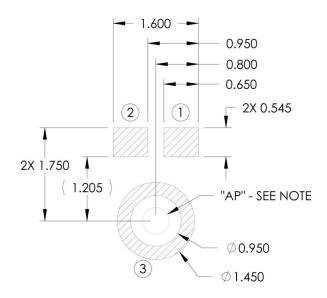
Reliability Specifications

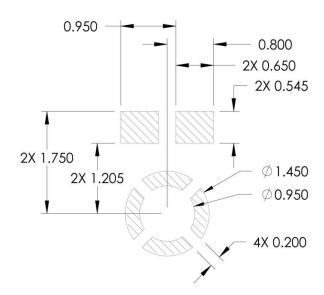

The microphone sensitivity after stress must deviate by no more than ±3dB from the initial value.

[411 1 T 1 O 11 1	T
1.Heat Test, Operational	Temperature: 85±3°C
	Humidity: 85±5%RH
	Duration: 12 hours
	Voltage: Applied
2.Cold Test, Operational	Temperature: -40±3°C
	Duration: 12 hours
	Voltage: Applied
3.Heat Test, Non-Operational	Temperature: 85±3°C
	Humidity: 50±5%RH
	Duration: 96 hours
	Voltage: Not Applied
4.Cold Test, Non-Operational	Temperature: -40±3°C
	Duration: 96 hours
	Voltage: Not Applied
5.Condensation Test, Non-Operational	Temperature: 25±3°C and 55±3°C
3.condensation lest, Non-operational	Humidity: 95±5%RH
	Duration: 1 hours each, during 10 minutes
	ramp, 45 cycles
	Voltage: Not applied
C. Tanananatura Cualina Nan Onanatianal	
6.Temperature Cycling, Non-Operational	Temperature: -40±3°C and 85±3°C
	Humidity: 50±5% RH
	Duration: 2 hours each, during 6 hours
	ramp, 5 cycles
	Voltage: Not applied
7.Thermal Shock Test, Non-Operational	Temperature: -40±3°C and 85±3°C
	Duration: 30 minutes each, during 5
	minutes ramp, 256 cycles
	Voltage: Not applied
8.Free Fall Test 1.5m	Placed inside test fixture and dropped on
	concrete from height 1.5m.
	(1)3 times by 6 surfaces
	(2)1 times by 12 edges
	(3)1 times by 8 corners
9.Random Vibration	Temperature: 23±5°C
	Humidity: 35~70% RH
	Duration: 2 hours each axis(X,Y,Z)
	Power Spectral Density:
	5Hz 0.10m2/s3(=1.0391*10-3g2/Hz)
	12Hz 2.20m2/s3(=22.8602*10-3g2/Hz)
	20Hz 2.20m2/s3(=22.8602*10-3g2/Hz)
	200Hz 0.04m2/s3(=0.41534*10-3g2/Hz)
	200Hz 0.04m2/s3(=0.41564*10-3g2/Hz)
10.Repeated Low Level Free Fall Test	Placed inside test fixture and dropped on
	rubber mat from height of 10cm.
	Each face 2500 times(Total 6 faces, 15000times)
11.1m Repeated Rotating	Placed inside test fixture and dropped on steel
Free Fall	* *
Fiee Fall	sheet from height of 1.0m.
	100 times(all faces)
42.5 5 11 7 15 1 1 1	Rotation speed of barrel: 10~12 falls/minute
12.Free Fall Test for master box	Corner drop: Each Corner 1 time
	Edge drop: Each Edge 1 time
	Face drop: Each Face 1 time

13.Random Vibration for master box	Sinusoidal wave vibration
	Frequency: 5~50Hz
	Acceleration:7.4m/s2(0.76G)
	Sweep speed:9Hz/min(5~50Hz, one way 5 min)
	Test duration: Direction of Face 1-3 20min
	Direction of Face 2-4 20min
	Direction of Face 5-6 20min
	Sample and direction of vibration: 1 direction
	for 1 sample
	Package on vibrating table: Free
14.Substrate bending Test	Deflection: 3mm
	Rate: 0.5mm/sec
15.Adhesion	Load: 10 N
	Duration: 10 seconds
16.Electrostatic Discharge Test	Capacitance: 150pF
	Resistance: 330Ω
	Duration: 10 times
	Air Discharge: Level 3(+/-8kV)
	Direct contact discharge: Level 1 (+/-2kV)
17.Human Body Model	2000 Volts (100pF,1500Ω)
18.Charged Device Model	500 Volts
19.Self alignment effect	Displacement: 0.15mm

MECHANICAL SPECIFICATIOPNS

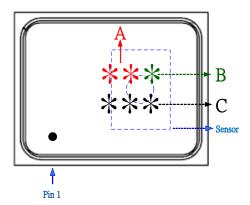



ITEM	DIMENSION	TOLERANCE	UNITS
Length (L)	2.75	±0.100	mm
Width (W)	1.85	±0.100	mm
Height (H)	0.90	±0.100	mm
Acoustic Port (AP)	Ø0.25	±0.050	mm

RECOMMENDED CUSTOMER LAND PATTERN

The recommended PCB land pattern for the ZTS6056 should have a 1:1 ratio to the solder pads on the microphone package. Care should be taken to avoid applying solder paste to the sound hole in PCB. The dimensions of suggested solder paste pattern refer to the land pattern **which should be shrunk by 0.025 per side**.

SOLDER FLOW PROFILE

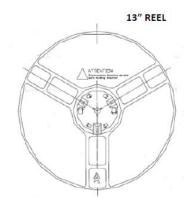

The reflow profile specified in this section describes expected maximum heat exposure of components during the reflow process of NMP product PWBs. Temperature is measured on top of component. All components have to tolerate at least this profile five times (5x) without affecting electrical performance, mechanical performance or reliability.

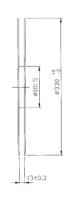
Pb-free and Sn63/Pb37 reflow profile requirements for soldering heat resistance:

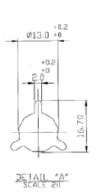

Parameter		Reference	Pb-Free	Sn63/Pb37
Average Ram	p Rate	T _L to T _P	1.25°C/sec max	1.25°C/sec max
	Minimum Temperature	T _{SMIN}	100°C	100°C
Prehear	Maximum Temperature	T _{SMAX}	200°C	150°C
	Time	T _{SMIN} to T _{SMAX}	60sec to 75sec	60sec to 75sec
Ramp-Up Rat	te	T _{SMAX} to T _L	1.25°C/sec	1.25°C/sec
Time Maintained Above Liquidous		t _L	50sec	60sec to 75sec
Liquidous Temperature		T _L	217°C	183°C
Peak Temperature		T _P	260°C +0°C/-5°C	215°C +3°C/-3°C
Time Within Temperature	n +5°C of Actual Peak	t _P	20 sec to 30 sec	20 sec to 30 sec
Ramp-Down Rate		T _{peak}	3°C/sec max	3°C/sec max
Time +25° Temperature	(2500)		5 min max	5 min max

MARKING RULE

PACKAGING

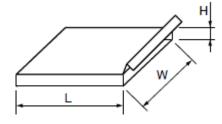



Unit: mm

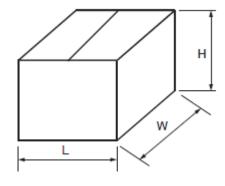

Symbol	Spec.
K1	-
Po	4.0 ± 0.10
P1	8.0 ± 0.10
P2	2.0 ± 0.05
D _o	1.55 ± 0.05
D1	1.50 (MIN)
E	1.75 ± 0.10
F	5.50 ± 0.05
10P ₀	40.0 ± 0.10
W	12.0 ± 0.20
Т	0.30 ± 0.05

Notice:

- $1 \cdot 10$ Sprocket hole pitch cumulative tolerance is ± 0.1 mm.
- $\mathbf{2}\cdot \mathbf{Pocket}$ position relative to sprocket hole measured as true position of pocket not pocket hole.
- $3 \cdot A_0 \& B_0$ measured on a place 0.3mm above the bottom of the pocket to top surface of the carrier.
- $4\cdot K_{\text{O}}$ measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
- $5 \cdot \text{Carrier camber shall be not that 1mm per 100mm through a length of 250mm.}$



Part NO.	Reel Diameter	Quantity Per Reel	Quantity Per Inner Box	Quantity Per Outer Box
ZTS6056	13"	5,200	5,200	46,800


Dimensions for Inner Box

Unit: mm

L	w	Н
335	339	45

Dimensions for Outer Box

Unit: mm

L	W	Н
445	360	372