

HX6571 Hall-effect sensor is a temperature stable, stress-resistant sensor. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

HX6571 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, Advanced DMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output sensor on, and only switches off when a north polarity field of sufficient strength is present.

HX6571 is rated for operation between the ambient temperatures –40°C and 85°C for the E temperature range, and –40°C to 125°C for the K temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package SO is an SOT-23, a miniature low-profile surface-mount package, while package UA is a three-lead ultra mini SIP for through-hole mounting.

Packages is Halogen Free standard and which have been verified by third party lab.

Features and Benefits

- DMOS Hall IC Technology.
- Reverse bias protection on power supply pin.
- Chopper stabilized amplifier stage.
- Optimized for BLDC motor applications.
- Reliable and low shifting on high Temp condition.
- Good ESD Protection.
- 100% tested at 125 °C for K.
- Custom sensitivity / Temperature selection are available.

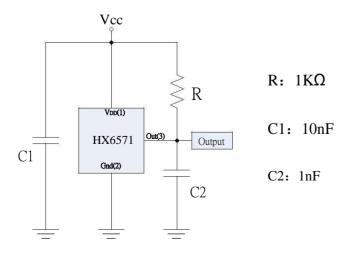
Applications

- High temperature Fan motor
 - 3 phase BLDC motor application
- Speed sensing
- Position sensing
 - Current sensing
- Revolution counting
- Solid-State Switch
- Linear Position Detection
- Angular Position Detection
- Proximity Detection
- High ESD Capability

Absolute Maximum Ratings At (Ta=25 °C)

Characteris	stics	Values	Unit	
Supply voltage, (V_{DD})		28	V	
Output Voltage,(Vout)		28	V	
Reverse voltage, (V_{DD})		-28/-0.3	V	
Output current, (Iout)		50	mA	
	"E" ve	-40 to +85	°C	
Operating Temperature Range, ("K" ver	-40 to +125	°C	
Storage temperature range, (T	Ts)	-65 to +150	°C	
Maximum Junction Temp,(Tj)	150	°C	
The arms of Desistance	$(heta_{ja})$ UA / SO	206 / 543	°C/W	
Thermal Resistance	(θ_{jc}) UA / SO	148 / 410	°C/W	
Package Power Dissipation, (P_D) UA / SO		606 / 230	mW	

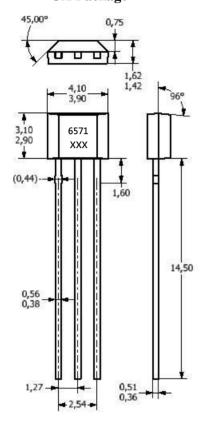
Note: Do not apply reverse voltage to V_{DD} and V_{OUT}

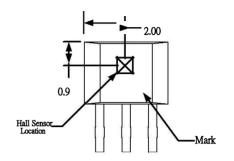

Pin, It may be caused for Miss function or damaged device.

Electrical Specifications

DC Operating Parameters: $T_A=+25$ °C, $V_{DD}=12V$

Parameters	Test Conditions	Min	Typ	Max	Units
Supply Voltage,(<i>VDD</i>)	Operating	2.5		26.0	V
Supply Current,(I_{DD})	B <bop< td=""><td></td><td></td><td>5.0</td><td>mA</td></bop<>			5.0	mA
Output Saturation Voltage, (Vsat)	Iout=20mA,B>BOP			400.0	mV
Output Leakage Current, (Ioff)	IOFF B <brp, vout="12V</td"><td></td><td></td><td>10.0</td><td>uA</td></brp,>			10.0	uA
Internal Oscillator Chopper Frequency, (fosc)			69		kHz
Output Rise Time, (T_R)	RL=1.1KΩ, CL =20pF		0.04	0.45	uS
Output Fall Time, (T_F)	RL=820Ω; CL =20pF		0.18	0.45	uS
Electro-Static Discharge	НВМ	4			KV
Operate Point,(BoP)	UA(SO)	5(-25)		25(-5)	Gauss
Release Point, (B_{RP})	UA(SO)	-25(5)		-5(25)	Gauss
Hysteresis,(BHYS)			30		Gauss

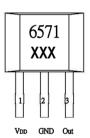

Typical application circuit



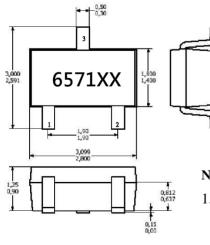
Sensor Location, Package Dimension and Marking HX6571 Package

UA Package

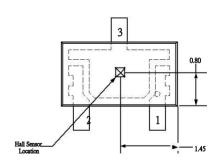
Hall Chip location



NOTES:

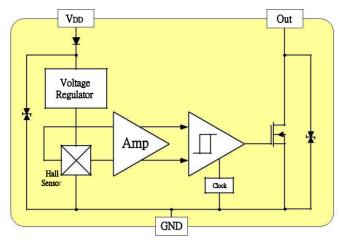

- 1).Controlling dimension: mm
- 2).Leads must be free of flash and plating voids
- Do not bend leads within 1 mm of lead to package interface.
- 4).PINOUT:

Pin 1 VDD
Pin 2 GND
Pin 3 Output


Output Pin Assignment (Top view)

SO Package (Top View)

Hall Plate Chip Location (Bottom view)



NOTES:

- 1. PINOUT (See Top View at left :)
 - Pin 1 V_{DD}
 - Pin 2 Output
 - Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum

Functional Diagram

Part No.	Temperature Suffix	Package Type
HX6571KUA	$K (-40^{\circ}C \text{ to}+125^{\circ}C)$	UA (TO-92S)
HX6571KSO	K (-40°C to+125°C)	SO (SOT-23)
HX6571EUA	$E(-40^{\circ}C \text{ to}+85^{\circ}C)$	UA (TO-92S)
HX6571ESO	$E(-40^{\circ}C \text{ to+}85^{\circ}C)$	SO (SOT-23)

KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.