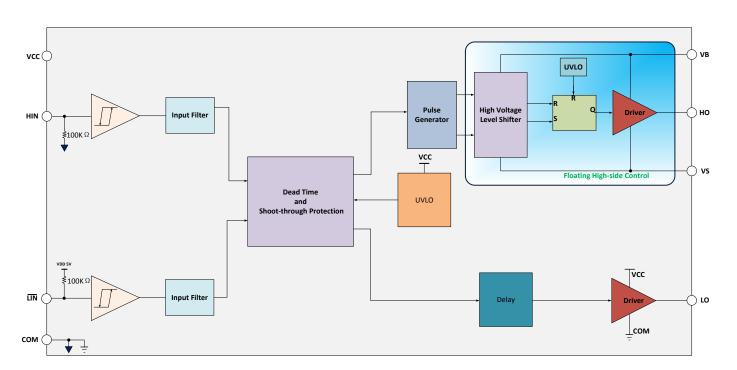
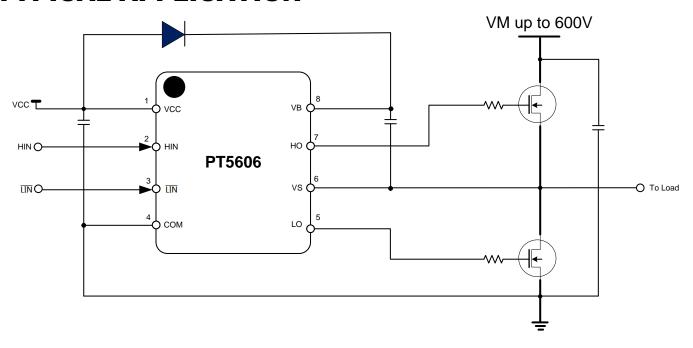
DESCRIPTION

The PT5606 is a high speed high voltage (600V) driver to control power devices like MOS-transistors or IGBTs in half bridge systems with dependent high and low side referenced output channels. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The device includes an under-voltage detection unit with hysteresis characteristic and prevents power devices against large amount of conduction loss, when voltage margin of gate is not high enough. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT, in the high side configuration which operates up to 600 volts.


APPLICATIONS

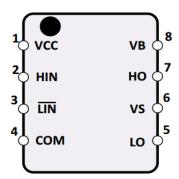
- Appliance motor drives—air conditioners, washing machines, refrigerator, dish washer, Fans
- General purpose inverters
- Electric bike, Electric tools
- Lighting, switching power supply


FEATURES

- Drives two IGBT/MOSFET power devices
- high side channel fully operate up to +600V
- Gate drive supplies from 10V to 20 V per channel
- Under-voltage lockout
- Advanced input filter
- Built-in dead-time protection: 0.5us
- IO+/-: 290/620mA, large sourcing current to bypass miller effect
- Shoot-through (cross-conduction) protection
- 3.3 V/5V/15V input logic compatible
- Matched propagation delays for all channels
- Matched dead time
- High side output in phase with HIN input
- Low side output out of phase with IIN input
- Tolerant to negative transient voltage, immunity of dv/dt up to 50V/ns
- Low di/dt gate drive for better noised immunity
- -40°C to 125°C operating range
- SOP8L Package available
- Lead-free

BLOCK DIAGRAM

TYPICAL APPLICATION



V1.0 2 December 2016

ORDER INFORMATION

Valid Part Number	Package Type	Top Code
PT5606	8-Pin, SOP, 150 MIL	PT5606-S

PIN CONFIGURATION

PT5606-S

Pin Configuration of PT5606

PIN DESCRIPTION

Pin Name	Description	Pin No.
VCC	Low-side supply voltage	1
HIN	Logic input for high-side gate driver output(HO), in phase	2
LIN	Logic input for low-side gate driver output(LO), out of phase	3
COM	Low-side gate drive return	4
LO	Low-side driver output	5
VS	High voltage floating supply return	6
НО	High-side driver output	7
VB	High-side gate drive floating supply	8

V1.0 3 December 2016

FUNCTION DESCRIPTION

LOW SIDE POWER SUPPLY

VCC is the low side supply and it provides power both to input logic and to low side output power stage. The built-in under-voltage lockout circuit enables the device to operate at sufficient power on when a typical VCC supply voltage higher than $V_{\text{CCUV}_{-}}$ =8.6 is present, shown as Figure 1. The IC shuts down the gate drivers outputs, when the VCC supply voltage is below $V_{\text{CCUV}_{-}}$ =8.1 V, shown as Figure 1. This prevents the external power devices from extremely low gate voltage levels during on-state and therefore from excessive power dissipation.

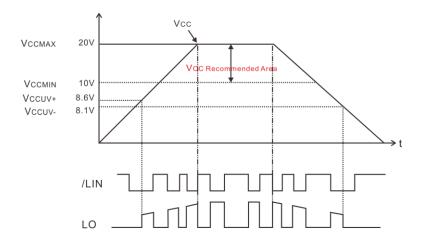


Figure.1: VCC supply UVLO operating area

HIGH SIDE POWER SUPPLY

VB to VS is the high side supply voltage. The totally high side circuitry can float with respect to COM following the external high side power device emitter/source voltage. Due to the internally low power consumption, the whole high side circuitry can be supplied by bootstrap topology connected to VCC, and it can be powered with small bootstrap capacitor tied between PIN VB and PIN VS.

The device operating area as a function of the supply voltage is given in Figure 2.

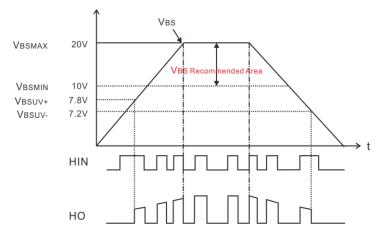


Figure.2: VBS supply UVLO operating area

V1.0 4 December 2016

LOW SIDE AND HIGH CONTROL INPUT LOGIC

The Schmitt trigger threshold of each input is designed enough low such to guarantee LSTTL and CMOS compatibility down to 3.3 V controller outputs. Input Schmitt trigger and advanced noise filter provide beneficial noise rejection to short input pulses.

DEAD TIME

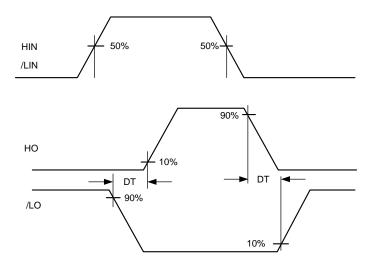


Figure.3: Dead Time

INPUT/OUTPUT TIMING DIAGRAM

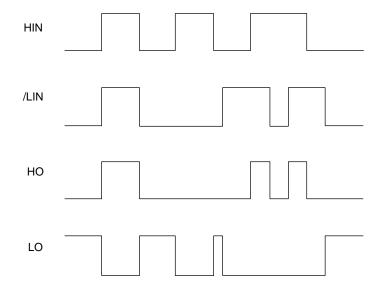


Figure.4: Timing diagram

V1.0 5 December 2016

SWITCHING TIME WAVEFORM

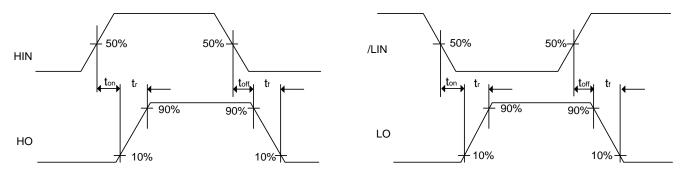


Figure.5: switching time waveform

V1.0 6 December 2016

ABSOLUTE MAXIMUM RATINGS

Stresses exceeding the absolute maximum ratings may damage the device or make the function abnormal. All the voltage parameters are absolute voltages referenced to COM unless otherwise stated in the table.

Parameter	Symbol	Min.	Max.	Units
High-side floating supply voltage	V _B	-0.3	625	
High-side offset voltage	Vs	V _B -25	V _B +0.3	
High-side gate driver output voltage	V _{HO}	V _S -0.3	Vs +0.3	
Low-side gate driver output voltage	V_{LO}	COM-0.3	Vcc+0.3	V
Logic input voltage(HIN, $\overline{\text{LIN}}$)	V _{HIN} V LIN	-0.3	25	
Low-side supply voltage	Vcc	-0.3	25	
Allowable offset voltage slew rate	DV/DT	-	50	V/ns
Package power dissipation @ T _A ≤+25°C	PD	-	0.625	W
Thermal resistance, junction to ambient	Rth _{JA}		200	°C/W
Junction temperature	TJ	-50	+150	
Storage temperature	Ts	-50	+150	°C
Lead temperature (soldering, 10 seconds)	TL	-	300	

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min.	Тур.	Max.	Units
Low-side supply voltage	Vcc	10	-	20	
High-side Floating Supply Offset Voltage(Note1)	Vs	-6	-	600	
High-side Floating Supply Voltage	V _B	Vs+10	-	Vs+20	
High-side gate driver output voltage	Vно	Vs	-	V _B	V
Low-side gate driver output voltage	V_{LO}	COM	-	Vcc	
Logic input voltage	V _{HIN} V LIN	0	-	5	
IC operating junction temperature	TJ	-40	-	+125	°C

Note:

V1.0 7 December 2016

¹⁾ For normal logic operation, it is recommended to keep the VS above -6V referenced to COM.

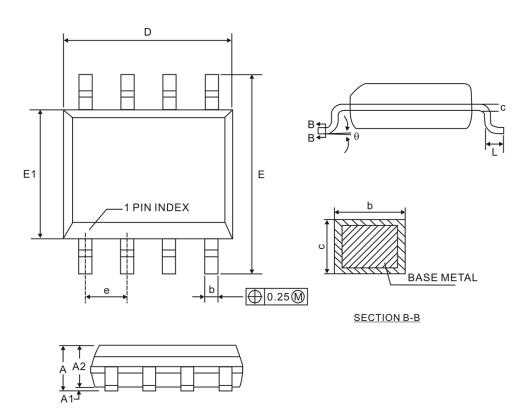
STATIC ELECTRICAL CHARACTERISTICS

 $(V_{CC}\text{-COM})=(V_B\text{-}V_S)=15V$. TAMB=25°C unless otherwise specified, The V_{IN} , V_{TH} and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Low Side Power Supply Characteristics						
VCC quiescent current	lavcc	V _{HIN} =0,V <u>IIN</u> =5V	-	180	250	μΑ
VCC supply under-voltage positive going threshold	Vccuv+		7.7	8.6	9.5	
VCC supply under-voltage negative going threshold	V _{CCUV} -		7.2	8.1	9	V
V _{CC} supply under-voltage lockout hysteresis	Vcchys		-	0.5	-	
High Side Floating Power Supply Characteristics						
High side VBS supply under-voltage positive going threshold	V _{BSUV+}		6.6	7.8	9	
High side VBS supply under-voltage negative going threshold	V _{BSUV} -		6	7.2	8.4	V
High side VBS supply under-voltage lockout hysteresis	V _{BSUVHYS}		-	0.6	-	
High side VBS quiescent current	IQBS	V _{BS} =15V	-	50	85	
Offset supply leakage current	I _{LK}	V _B =V _S =600V V _{CC} =0V	-	-	10	μA
Gate Driver Output Section						
Output High Short-Circuit Pulse Current	I _{O+}	V _{HO} =V _S =0, V _{HO} =V _B =15V, PW<10us	-	290	-	
Output Low Short-Circuit Pulse Current	lo-	V _{LO} =COM=0, V _{LO} =V _{CC} =15V, PW<10us	-	620	-	mA
High level output voltage drop, V _{CC} -V _{LO} ,V _{BS} -V _{HO}	ΔV_{OH}	Io+= 20 mA	-	0.4	1	V
Low level output voltage drop	ΔV_{OL}	Io-= 20 mA	-	0.15	0.3	V
Allowable Negative Vs Pin Voltage for COM	Vsn	Fixed V _{BS} =15V	-6	-	-	V
Logic Input Section						
Logic"1" Input voltage HIN and LIN	VIH		2.5	_	_	
Logic"0" Input voltage HIN and LIN	V _{IL}		-	-	0.8	1
Input positive going threshold	V _{IN,TH+}		-	1.9	-	V
Input negative going threshold	VIN,TH-		-	1.4	-	
Logic "1" Input bias current	I _{HIN+}	V _{IN} =5V	-	50	90	
Logic "0" Input bias current	I _{HIN-}	V _{IN} =0V	-	0	1	
Logic "1" Input bias current	I _{LIN+}	V _{IN} =5V	-	0	1	μΑ
Logic "0" Input bias current	I _{LIN} -	V _{IN} =0V	-	50	90	

V1.0 8 December 2016

DYNAMIC ELECTRICAL CHARACTERISTICS


 $(V_{CC}\text{-COM}) = (V_B\text{-}V_S)=15V$, $V_S=COM$, and $C_{HO}=C_{LO}=1nF$ unless otherwise specified, TAMB=25°C.

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
VCC operating Vcc supply current	Ivccop	f LIN=20K, f HIN =20K,	-	1	1.5	mA
Turn-On propagation delay	ton		300	500	700	
Turn-Off propagation delay	toff		300	500	700	
Turn-On rise time	t _R		-	70	-	
Turn-Off fall time	t _F		1	32	-	
Input filter	t _{flt}	V _{IN} =0 or 5V,	100	250	400	ns
Dead Time	DT	HIN and LIN inputs without external dead time	250	500	750	115
Delay Matching(ton, toff)	MT	HIN and LIN inputs with external dead time >2µs	-	-	50	
Output Pulse-Width Matching	PM	PW _{IN} =10µs, PM=PW _{OUT} -PW _{IN}	-	-	50	

V1.0 9 December 2016

PACKAGE INFORMATION

8 PINS, SOP, 150MIL

Cumbal	Dimension					
Symbol	Min.	Nom.	Max.			
Α	1.35	1.60	1.77			
A1	0.08	0.15	0.28			
A2	1.20	1.40	1.65			
b	0.33	•	0.51			
С	0.17	-	0.26			
е	1.27 BSC					
D	4.70	4.90	5.10			
E	5.80	6.00	6.20			
E1	3.70	3.90	4.10			
L	0.38	0.60	1.27			
θ	0°	-	8°			

Notes:

- 1. Refer to JEDEC MS-012 AA
- 2. Unit: mm