
Abstract

General Description The MAX5527/MAX5528/MAX5529 linear-taper digital potentiometers perform the same function as mechanical potentiometers, replacing the mechanics with a simple 2-wire up/down digital interface. These digital potentiometers provide an optional one-time programmable feature that sets the power-on reset position of the wiper. Once the wiper position is programmed, the 2-wire interface can be disabled to prevent unwanted adjustment.

The MAX5527/MAX5528/MAX5529 provide an end-to-end resistance of $100 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$, and $10 \mathrm{k} \Omega$, respectively. The devices feature low temperature coefficients of $35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ end-to-end and $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ratiometric. All devices offer 64 wiper positions and operate from a single +2.7 V to +5.5 V supply. An ultra-low, $0.25 \mu \mathrm{~A}$ (typ) standby supply current saves power in battery-operated applications. The MAX5527/MAX5528/MAX5529 are available in $3 \mathrm{~mm} \times 3 \mathrm{~mm}$, 8 -pin TDFN and $5 \mathrm{~mm} \times 3 \mathrm{~mm}$, 8 -pin $\mu \mathrm{MAX}{ }^{\circledR}$ packages. Each device is guaranteed over the $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ temperature range

Applications
Products Using One-Time Factory Calibration Mechanical Potentiometer Replacements

Pin Configurations

$\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc

Features

- Wiper Position Stored After One-Time Fuse Programming
- 64 Tap Positions
- Wiper Position Programmed Through Simple 2-Wire Up/Down Interface
-35ppm/ ${ }^{\circ} \mathrm{C}$ End-to-End Temperature Coefficient
- 5ppm/ ${ }^{\circ} \mathrm{C}$ Ratiometric Temperature Coefficient
- Ultra-Low 1.5 $\mu \mathrm{A}$ (max) Static Supply Current
- +2.7V to +5.5V Single-Supply Operation
- $10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$, and $100 \mathrm{k} \Omega$ End-to-End Resistances
- Tiny, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$, 8-Pin TDFN and $5 \mathrm{~mm} \times 3 \mathrm{~mm}$, 8-Pin μ MAX Packages

Ordering Information

PART	PIN-PACKAGE	RESISTANCE $\mathbf{(k} \boldsymbol{\Omega})$	TOP MARK
MAX5527GTA +	8 TDFN-EP*	100	AOG
MAX5527GUA +	8μ MAX	100	-
MAX5528GTA +	8 TDFN-EP*	50	AOH
MAX5528GUA +	8μ MAX	50	-
MAX5529GTA +	8 TDFN-EP*	10	AOI
MAX5529GUA $+8 \mu$ MAX	10	-	

+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ operating temperature range.

Functional Diagram

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

One-Time Programmable, Linear-Taper Digital Potentiometers

ABSOLUTE MAXIMUM RATINGS

pation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
Pin μ MAX (derate $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	
8-Pin TDFN (derate $18.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)) 454.5 mW
Operating Temperature Range- $40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	
Junction Temperature ... $+150^{\circ} \mathrm{C}$	
Storage Temperature Range-65 ${ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{L}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}$ $=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DC PERFORMANCE							
Resolution				64			Taps
End-to-End Resistance		MAX5527		75	100	125	k Ω
		MAX5528		37.5	50	62.5	
		MAX5529		7.5	10	12.5	
End-to-End Resistance Temperature Coefficent	TCR				35		ppm $/{ }^{\circ} \mathrm{C}$
Resistance Ratio Temperature Coefficient		MAX5527/MAX5528		5			ppm $/{ }^{\circ} \mathrm{C}$
		MAX5529		10			
Integral Nonlinearity	INL	Potentiometer configuration, no load, Figure 1			± 0.025	± 1	LSB
Differential Nonlinearity	DNL	Potentiometer configuration, no load, Figure 1			± 0.01	± 1	LSB
Full-Scale Error		Potentiometer configuration, no load, Figure 1			-0.005	-1	LSB
Zero-Scale Error		Potentiometer configuration, no load, Figure 1			+0.006	+1	LSB
Wiper Resistance (Note 2)	Rw	$V_{D D} \geq 3 \mathrm{~V}$			90	200	Ω
		$V_{D D}<3 V$			125	650	
DYNAMIC CHARACTERISTICS							
Wiper -3dB Bandwidth (Note 3)		MAX5527			100		kHz
		MAX5528		200			
		MAX5529		1000			
Total Harmonic Distortion		$\begin{aligned} & f=10 \mathrm{kHz} \text {, midscale, } 1 V_{\mathrm{RMS}} \\ & \mathrm{RL}_{\mathrm{L}}=100 \mathrm{k} \Omega \end{aligned}$	MAX5527		-78		dB
			MAX5528		-82		
			MAX5529		-94		

One-Time Programmable, Linear-Taper Digital Potentiometers

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{L}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}$ $=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DIGITAL INPUTS ($\overline{\mathbf{C S}}, \mathbf{U} / \overline{\mathbf{D}})$						
Input High Voltage	V_{IH}		$\begin{aligned} & 0.7 x \\ & V_{D D} \end{aligned}$			V
Input Low Voltage	VIL				$\begin{aligned} & 0.3 x \\ & V_{D D} \end{aligned}$	V
Input Current	IIN			± 0.1	± 1	$\mu \mathrm{A}$
Input Capacitance	CIN			5		pF
TIMING CHARACTERISTICS (Note 4)						
U/ $\overline{\mathrm{D}}$ Mode to $\overline{\mathrm{CS}}$ Setup Time	tcu	Figures 2 and 3	50			ns
U/D Mode to $\overline{\mathrm{CS}}$ Hold Time	tCl	Figures 2 and 3	50			ns
$\overline{\mathrm{CS}}$ to U/D Step Hold Time	tic	Figures 2 and 3	0			ns
U/D Step Low Time	tIL	Figures 2 and 3	100			ns
U/ $\overline{\mathrm{D}}$ Step High Time	$\mathrm{tIH}^{\text {H }}$	Figures 2 and 3	100			ns
Wiper Settling Time	tıw	$C_{L}=0 p F$, Figures 2 and 3 (Note 5)		400		ns
PV Rising Edge to $\overline{\mathrm{CS}}$ Falling Edge	tpC	Figure 5	1			ms
$\overline{\mathrm{CS}}$ Falling Edge to PV Falling Edge	tcP	Figure 5	5			ms
$\overline{\mathrm{CS}}$ Step Low Time	tCL	Figure 5	5			ms
$\overline{\mathrm{CS}}$ Step High Time	tch	Figure 5	5			ms
PV Falling Edge to $\overline{\mathrm{CS}}$ Rising Edge	tph	Figure 5	1			ms
U/ $\overline{\mathrm{D}}$ Frequency	fu/DMAX				5	MHz
Power-Up Time	tup	(Note 6)			1	ms
POWER SUPPLY						
Supply Voltage	$V_{D D}$		2.7		5.5	V
Static Supply Current	IDD	$\overline{\mathrm{CS}}=\mathrm{U} / \overline{\mathrm{D}}=\mathrm{GND}$ or V_{DD}			1.5	$\mu \mathrm{A}$
Programming Voltage	PV	$\mathrm{T}_{\mathrm{A}}<+50^{\circ} \mathrm{C}$	10.45		11.55	V
		$\mathrm{T}_{\mathrm{A}} \geq+50^{\circ} \mathrm{C}$	11.00		11.55	
Programming Current	IPV	$\mathrm{V}_{\mathrm{PV}}=11 \mathrm{~V}$		4	5	mA

Note 1: All devices are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, and are guaranteed by design for $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.
Note 2: The wiper resistance is measured by driving the wiper terminal with a source of 20رA for the MAX5527, 40 HA for the MAX5528, and 200 4 A for the MAX5529.
Note 3: Wiper at midscale with a 10 pF load.
Note 4: Digital timing is guaranteed by design, not production tested.
Note 5: Wiper setting time is measured for a single step from U/D transition until wiper voltage reaches 90% of final value.
Note 6: Power-up time is the period of time from when the power supply is applied, until the serial interface is ready for writing.

One-Time Programmable, Linear-Taper Digital Potentiometers

($\mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)
Typical Operating Characteristics

\qquad

One-Time Programmable, Linear-Taper Digital Potentiometers

TAP-TO-TAP SWITCHING TRANSIENT

One-Time Programmable, Linear-Taper Digital Potentiometers

\qquad Typical Operating Characteristics (continued)
$\left(V_{D D}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

One-Time Programmable, Linear-Taper Digital Potentiometers

Pin Description

PIN	NAME	FUNCTION
1	W	Wiper Connection
2	$\overline{\mathrm{CS}}$	Chip-Select Input. A high-to-low $\overline{\mathrm{CS}}$ transition determines the increment/decrement mode. Increment if U / \bar{D} is high, or decrement if U / \bar{D} is low. $\overline{C S}$ is also used for one-time programming. See the $P V$ OneTime Programming section.
3	VDD	Supply Voltage. Bypass with a $0.1 \mu \mathrm{~F}$ capacitor to GND.
4	GND	Ground
5	PV	One-Time Programming Voltage. Connect PV to an 11 V supply at the time the device is programmed/locked, and bypass with a $22 \mu \mathrm{~F}$ capacitor to GND. For normal operation, connect to GND or leave floating.
6	U/D	Up/Down Control Input. When $\overline{\mathrm{CS}}$ is low, a low-to-high transition at U/D increments or decrements the wiper position. See the Digital Interface Operation section.
7	L	Resistor Low Terminal
8	H	Resistor High Terminal
-	EP	Exposed Pad (TDFN Only). Internally connected to GND. Connect to a large ground plane to maximize thermal dissipation.

Detailed Description

The MAX5527/MAX5528/MAX5529 100k $\Omega / 50 \mathrm{k} \Omega / 10 \mathrm{k} \Omega$ end-to-end resistance digitally-controlled potentiometers offer 64 wiper tap positions accessible along the resistor array between H and L . These devices function as potentiometers or variable resistors (see Figure 1).
The wiper (W) position is adjusted sequentially through the tap positions using a simple 2-wire up/down interface. These digital potentiometers provide an optional one-time programmable feature that sets and locks the power-on reset position of the wiper (see the PV OneTime Programming section). Once the desired wiper position is programmed, the 2-wire interface can be disabled to prevent unwanted adjustment.

Digital Interface Operation

The MAX5527/MAX5528/MAX5529 provide two modes of operation when the serial interface is active: increment mode or decrement mode. The serial interface is only active when $\overline{\mathrm{CS}}$ is low.
The $\overline{\mathrm{CS}}$ and U/D inputs control the position of the wiper along the resistor array. Set $U / \overline{\bar{D}}$ high to increment the MAX5527/MAX5528/MAX5529 when $\overline{\mathrm{CS}}$ transitions from high to low (Figure 2). Set U/D low to decrement the MAX5527/MAX5528/MAX5529 when $\overline{\mathrm{CS}}$ transitions high to low (Figure 3). Once $\overline{\mathrm{CS}}$ is held low, each low-to-high transition at U / \bar{D} increments or decrements the wiper one position. Once the increment or decrement

Figure 1. Potentiometer/Variable-Resistor Configuration
mode is set, the device remains in that mode until $\overline{\mathrm{CS}}$ goes high.
Idle U / \bar{D} high for normal operation. If U / \bar{D} is low when $\overline{\mathrm{CS}}$ transitions low to high, the wiper moves one additional tap in its present direction. The wiper remains in the same position when U / \bar{D} is high and $\overline{\mathrm{CS}}$ transitions low to high. After $\overline{\mathrm{CS}}$ returns high, the wiper position remains the same (Figure 4).
Additional increments do not change the wiper position when the wiper is at the maximum end of the resistor array. Additional decrements do not change the wiper position when the wiper is at the minimum end of the resistor array.

One-Time Programmable, Linear-Taper Digital Potentiometers

Figure 2. Increment-Mode Timing Diagram

Figure 3. Decrement-Mode Timing Diagram

Figure 4. $\overline{C S}$ Low-to-High Transition Timing Diagram

PV One-Time Programming
The MAX5527/MAX5528/MAX5529 power up and function after power-up with the wiper position set in one of three ways:

1) Factory default power-up position, midscale, adjustable wiper
2) A newly programmed power-up position, adjustable wiper
3) A new programmed power-up position, locked wiper The wiper is set to the factory default position at powerup (midscale, tap 31). Connect PV to GND or leave floating to continue powering up the wiper position at midscale. See Table 1 for the default and one-time programming options.

One-Time Programmable, Linear-Taper Digital
 Potentiometers

Figure 5. One-Time Program Mode, Serial-Interface Timing Diagram

Table 1. One-Time Programming Options

MODE	POWER-ON RESET WIPER POSITION	ADJUSTABLE WIPER
Factory Default (Unprogrammed)	Tap 31	Yes
Programmed by Six $\overline{\mathrm{CS}}$ Pulses	Programmed position	Yes
Programmed by Seven $\overline{\mathrm{CS}}$ Pulses	Programmed position	No

Change the wiper's power-up position using the PV one-time programming sequence after power-up (see Figure 5). After setting the wiper to the desired powerup position, perform the following six-step sequence:

1) Set U / \bar{D} and $\overline{C S}$ high.
2) Connect an external voltage source at PV in the range of +11 V to +11.55 V .
3) Pull $\overline{\mathrm{CS}}$ low.

4a) Pulse $\overline{\mathrm{CS}}$ high for six cycles, consisting of $\overline{\mathrm{CS}}$ starting low and going high for at least tch, and then low for at least tCL, to change the wiper power-up position. The wiper remains adjustable.
4b) Pulse $\overline{\mathrm{CS}}$ high for seven cycles, consisting of $\overline{\mathrm{CS}}$ starting low and going high for at least tcH and then low for at least tCL, to change the wiper power-up position and lock the wiper in that same position. The seventh $\overline{\mathrm{CS}}$ pulse is labeled the optional lockout bit in Figure 5.
5) Connect PV to GND or release the voltage source, leaving PV floating.
6) Pull $\overline{\mathrm{CS}}$ high.

Figure 6. PV Power-Supply Decoupling
Pulse $\overline{\mathrm{CS}}$ high for six cycles to change the wiper powerup position. The wiper position returns to this programmed position on power-up, but remains adjustable.
Pulse $\overline{\mathrm{CS}}$ high for seven cycles to lock the MAX5527/ MAX5528/MAX5529 to a specific wiper position with no further adjustments allowed. This effectively converts the potentiometer to a fixed resistor-divider. The seventh pulse locks the wiper position and disables the up/down interface. Once locked, connect U/D and $\overline{\mathrm{CS}}$ high, low, or leave them floating without increasing the supply current (see Table 1).
If six clock pulses are used, the interface is enabled and the device can be put into program mode again. However, the part uses one-time programmable (OTP) memory and should be programmed only once. If the part is programmed more than once, all applied values are ORed together. Thus, if 010101 is programmed the first time and 101010 is programmed the second time, the result will be 111111.
The external PV power supply must source at least 5 mA and have a good transient response. Decouple the PV power supply with a $22 \mu \mathrm{~F}$ capacitor to GND. Ensure that no more than $250 \mu \mathrm{H}$ of inductance and/or 40Ω of parasitic resistance exists between the capacitor and the device (see Figure 6).

One-Time Programmable, Linear-Taper Digital Potentiometers

Figure 7. Positive LCD Bias Control Using a Voltage-Divider

Figure 9. Programmable Filter

Applications Information

Use the MAX5527/MAX5528/MAX5529 in applications requiring digitally controlled adjustable resistance, such as LCD contrast control where voltage biasing adjusts the display contrast, or for programmable filters with adjustable gain and/or cutoff frequency.

Positive LCD Bias Control

Figures 7 and 8 show an application where the voltagedivider or variable resistor is used to make an adjustable, positive LCD bias voltage. The op-amp provides buffering and gain to the resistor-divider network made by the potentiometer (Figure 7), or to a fixed resistor and a variable resistor (Figure 8).

Figure 8. Positive LCD Bias Control Using a Variable Resistor

Figure 10. Adjustable Voltage Reference

Programmable Filter

Figure 9 shows the configuration for a 1st-order programmable filter. The gain of the filter is adjusted by R2, and the cutoff frequency is adjusted by R3. Use the following equations to calculate the gain (G), and the $-3 d B$ cutoff frequency (fc), only up to frequencies one decade below the wiper -3dB bandwidth.

$$
\begin{aligned}
\mathrm{G} & =1+\frac{\mathrm{R} 1}{\mathrm{R} 2} \\
\mathrm{f}_{\mathrm{C}} & =\frac{1}{2 \pi \times \mathrm{R} 3 \times \mathrm{C}}
\end{aligned}
$$

Adjustable Voltage Reference

Figure 10 shows the MAX5527/MAX5528/MAX5529 used as the feedback resistors in an adjustable-voltage reference application.

One-Time Programmable, Linear-Taper Digital Potentiometers

Layout and Power-Supply Considerations

Proper layout and power-supply bypassing can affect device performance. Bypass VDD with a $0.1 \mu \mathrm{~F}$ capacitor as close to the device as possible. When programming the wiper position, bypass PV with a $22 \mu \mathrm{~F}$ capacitor as close to the device as possible. For a VDD power supply with a slew rate greater than $1 \mathrm{~V} / \mu \mathrm{p}$ or in applications where power-supply overshoot is prevalent, connect a 10Ω resistor in series to VDD and bypass VDD with an additional $4.7 \mu \mathrm{~F}$ capacitor to ground.

Chip Information

TRANSISTOR COUNT: 3420
PROCESS: BiCMOS

Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
8 TDFN-EP	T833+2	$\underline{\mathbf{2 1 - 0 1 3 7}}$
$8 \mu \mathrm{MAX}$	$\mathrm{U} 8+1$	$\underline{\mathbf{2 1 - 0 0 3 6}}$

One-Time Programmable, Linear-Taper Digital Potentiometers

REVISION NUMBER	REVISION DATE		DESCRIPTION	PAGES CHANGED
0	$5 / 05$	Initial release	-	
1	$7 / 09$	Added lead-free note to the Ordering Information. Added exposed pad information to the Pin Description. Added text to PV One-Time Programming section.	$1,7,9$	

