

BG200B12UY3-I

IGBT Power Module

V_{CE}=1200V I_C=200A

General Description

BYD IGBT Power Module BG200B12UY3-I provides fast switching characteristic as well as high short circuit capability, which introduce the advanced IGBT chip/FWD and improved connection.

Features

- High speed IGBT technology
- Including ultra fast & soft recovery anti-parallel FWD
- Low inductance
- Standard package
- High short circuit capability
- Fast switching and short tail current

C IND Mendematic Calu

aqA	lications
	loutions

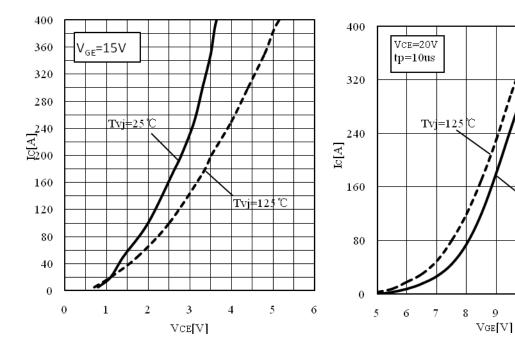
- High frequency drivers
- AC motor control
- Inverters
- Servo
- UPS (Uninterruptible Power Supplies)
- Electric welding

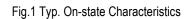
Characteristic Values

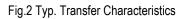
Parameter	Symbol	Conditions	Temperature	Value	Unit				
Absolute Maximum Ratings									
Collector-emitter voltage	VCES	V _{GE} =0V	Tj =25 ℃	1200	V				
Continuous collector current	lc	—	Tc =80 ℃	200	Α				
Peak collector current	I _{CRM}	I _{CRM} =2I _C ,tp=1ms	_	400	Α				
Gate-emitter voltage	V _{GES}	_	_	+/-20	V				
Total power dissipation	P _{tot}	per switch (IGBT)	Tc=25℃	1041	W				
IGBT short circuit SOA	t _{psc}	V _{CC} =600V, V _{GE} ≤15V V _{CES} ≤1200V	T _{vj} ≤125℃	10	us				
Max. junction temperature	T _{vj max}	_	_	150	°C				
Operation junction temperature	T _{vj op}	_	_	-40~125	°C				
Storage temperature range	T _{stg}	_	_	-40~125	°C				
Diode DC forward current	IF	_	Tc=80℃	200	Α				
Peak forward current	IFRM	I _{FRM} =2I _F ,tp=1ms	_	400	Α				
l²t-value, Diode	l²t	V _R =0V,t=10ms	Tj=125℃	_	A ² s				
Isolation voltage	Visol	t=1min,f=50Hz	_	AC 2500	V				

BYD Microelectronics Co., Ltd.

ΗD


Parameter	Symbol	Conditions	Temperature	Value			Unit
		Characteristics	1				
IGBT				min.	typ.	max.	
Gate-emitter threshold voltage	$V_{\text{GE}(\text{th})}$	V_{GE} = V_{CE} , I_C = 3mA	T _{vj} =25℃	5.0	5.8	6.5	V
Collector-emitter cut-off current	ICES	V _{CE} =1200V,V _{GE} =0V	T _{vj} =25℃	_	_	1	mA
	1023		T _{vj} =125℃	_	—	10	mA
Gate-emitter cut-off current	I _{GES}	$V_{CE}=0V, V_{GE}=\pm 20V$	T _{vj} =25℃	-400	—	400	nA
Collector-emitter	V _{CE(sat)}	Ic=200A,V _{GE} =15V	T _{vj} =25℃	_	2.8	—	V
saturation voltage	V CE(sat)	10-200A, VGE-13V	T _{vj} =125℃	—	3.5	—	V
Integrated gate resistor	RGint	—	T _{vj} =25℃	_	1.5	_	Ω
Total Gate Charge	Qg		_	_	1.28	—	uC
Gate-Emitter Charge	Q _{ge}	V _{CE} =600V,I _C =200A, V _{GE} =0V…+15V	_		0.22	_	uC
Gate-Collector Charge	Q _{gc}	VGE-0V 10V	_	_	0.80	_	uC
Input capacitance	Cies				12.8	_	nF
Output capacitance	Coes	V _{CE} =25V,V _{GE} =0V, f=1MHz	Tvj =25 ℃		7.5	_	nF
Reverse transfer capacitance	Cres				9.3	_	nF
The second state of the second	t _{d(on)}	$V_{CC}=600V, I_{C}=200A,$ $R_{Gon}=R_{Goff}=3.3\Omega,$ $V_{GE}=\pm15V,$ $L_{\sigma}=80nH,$ Inductive load	T _{vj} =25℃	_	224	_	ns
Turn-on delay time			T _{vj} =125℃	_	210	_	ns
Rise time	tr		T _{vj} =25℃	_	91	_	ns
Rise une			T _{vj} =125℃	_	84	_	ns
Turn-off delay time	$t_{d(\text{off})}$		T _{vj} =25℃	_	400	—	ns
			T _{vj} =125℃	_	460	—	ns
			T _{vj} =25℃	—	140	—	ns
Fall time	tr		T _{vj} =125℃	_	200	_	ns
Energy dissipation during turn-on time	Eon	$\label{eq:cc} \begin{array}{l} V_{cc}{=}600V, \ I_{c}{=}200A, \\ R_{Gon}{=}3.3\Omega, \ V_{GE}{=}{\pm}15V, \\ L_{\sigma}{=}80nH, \\ Inductive \ Ioad \end{array}$	T _{vj} =25℃	_	13.9	_	mJ
			T _{vj} =125℃	_	17.8	_	mJ
Energy dissipation during turn-off time		$V_{CC}=600V, I_{C}=200A,$ $R_{Goff}=3.3\Omega, V_{GE}=\pm15V$	T _{vj} =25℃	_	10.9	_	mJ
	E _{off}	L₀=80nH, Inductive load	T _{vj} =125℃	_	15.8	_	mJ

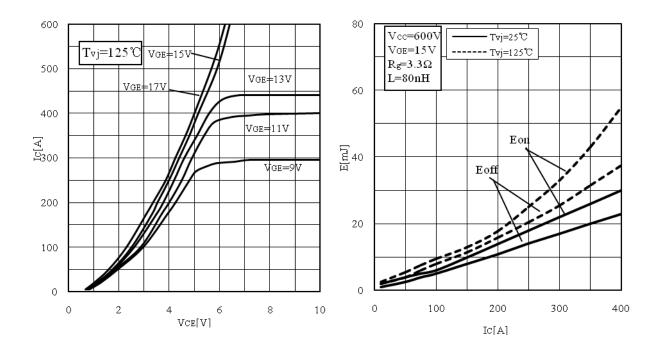

Parameter	Symbol	Conditions	Temperature	Value		Unit	
Diode				min.	typ.	max.	
Forward voltage	VF	IF=200A	T _{vj} =25℃		1.8		V
			T _{vj} =125℃	_	1.8		V
Peak reverse recovery current	I _{RR}	I⊧=200A,V _R =600V, di⊧/dt=1100/us	T _{vj} =125℃	_	160		A
Recovered charge	Qrr		T _{vj} =125℃	_	28.4		uC
Reverse recovery time	trr		T _{vj} =125℃	_	370		ns
Reverse recovery energy	Erec		T _{vj} =125℃	_	10.5		mJ
	Therma	al-Mechanical Spe	cifications				
IGBT thermal resistance junction to case	R _{th(j-c)}	per IGBT		_	_	0.12	K/W
Diode thermal resistance junction to case	R _{th(j-c)}	per diode		_	_	0.2	K/W
Thermal resistance case to heat-sink	R _{th(c-s)}	per module		_	0.03	_	K/W
Dimensions	LxWxH	Typical , see outline drawing		106.4 x 61.4 x 31.5			mm
Clearance distance in air	da	according to IEC	Term. to base:	_	_	28.3	
		60664-1 and EN 50124-1	Term. to term:	6.0	_	_	mm
Surface creepage distance	ds	60664-1 and EN	Term. to base:	_	24	_	mm
			Term. to term:	_	14	_	
Mass	m	_		_	320	_	g


Thermal and mechanical properties according to IEC 60747–15

Specification according to the valid application note.

Characterization Curves

1


Tvj=25℃

11

12

13

10

Fig.3 Typ. Output Characteristics

Fig.4 Switching Loss vs. Collector Current

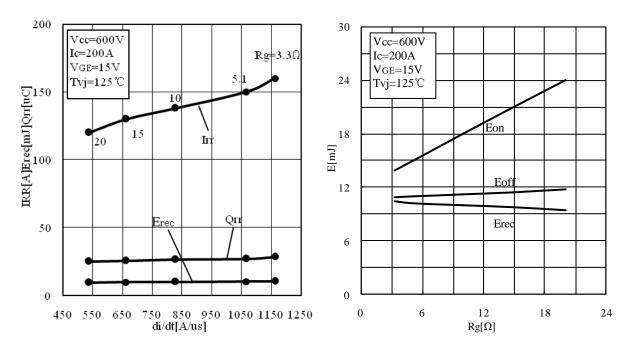
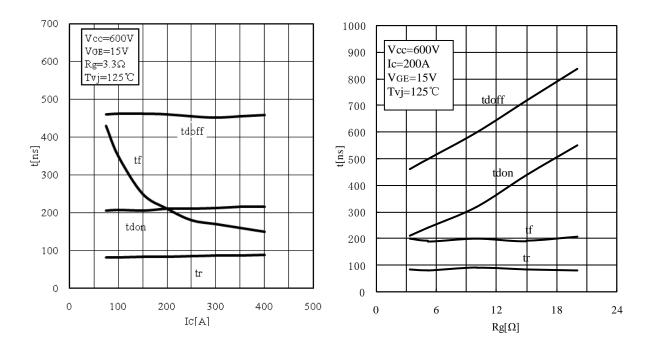



Fig.5 Typ. Reverse Recovery Characteristics vs di/dt

Fig.6 Switching Loss vs. Gate Resistor

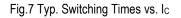
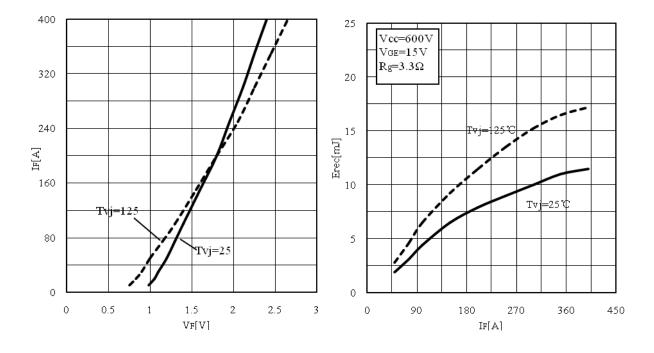



Fig.8 Typ. Switching Times vs. Gate Resistor R_G

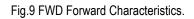


Fig.10 Typ. Switching Losses Diode-Inverter

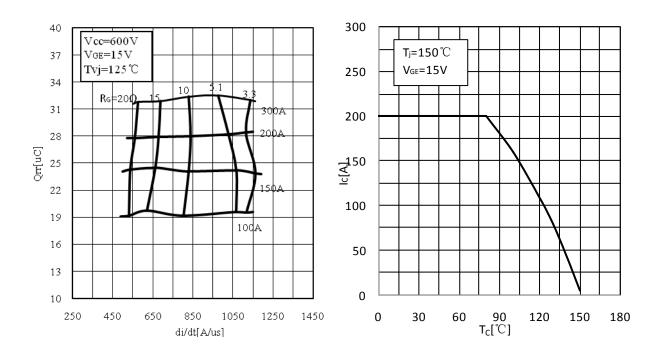
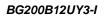
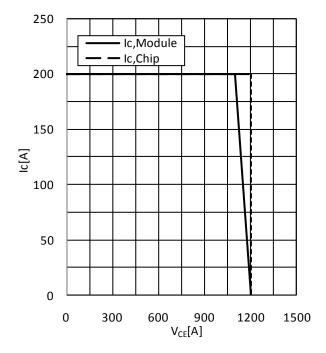
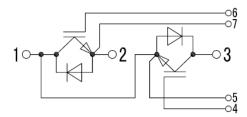
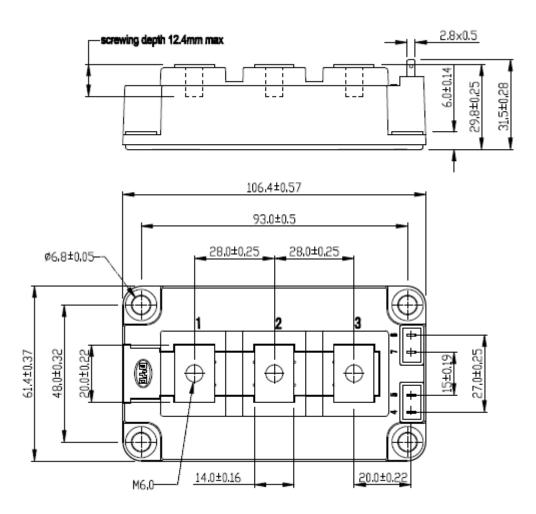



Fig. 12 Rate Current vs. Temperature (Tc)


Fig.13 Reverse Bias Safe Operating Area IGBT-inv(RBSOA)

Circuit Diagram

Package Outlines

Dimensions in mm

Attached (recommended torque):

M_S : (to heat sink M6) 3~6 Nm

M_t: (to terminals M6) 2.5~5 Nm

Attention

- 1. In order to reduce the contact resistance, we suggest add thermal grease between base and heat-sink, which thickness is about 0.1mm.
- 2. When installing the module, please wear a electrostatic bracelet to prevent the gate breakdown and the imbalance power may damage the internal chip, even to damage the module.
- 3. This is an electrostatic sensitive device, please observe the international standard IEC 60747-1, chap. IX.

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice.
- BYD Microelectronics Co., Ltd. (short for BME) exerts the greatest possible effort to ensure high quality and reliability. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing BME products, to comply with the standards of safety in making a safe design for the entire system, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue. In developing your designs, please ensure that BME products are used within specified operating ranges as set forth in the most recent BME products specifications.
- The BME products listed in this document are intended for usage in general electronics applications (personal equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These BME products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of BME products listed in this document shall be made at the customer's own risk.