

FEATURES

- Overshoot and Undershoot Voltage Protection
- Specified Break-Before-Make Switching
- Low ON-State Resistance (10 Ω)
- Control Inputs Are 5-V Tolerant
- Low Charge Injection
- Excellent ON-Resistance Matching
- Low Total Harmonic Distortion (THD)
- 1.8-V to 5.5-V Single-Supply Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)
 - 300-V Machine Model (A115-A)

APPLICATIONS

- Sample-and-Hold Circuit
- Battery-Powered Equipments
- Audio and Video Signal Routing
- Communication Circuits

DESCRIPTION/ORDERING INFORMATION

The TS5A623157 is a dual single-pole, double-throw (SPDT) analog switch designed to operate from 1.65 V to 5.5 V. This device can handle both digital and analog signals. Signals up to V+ (peak) can be transmitted in either direction.

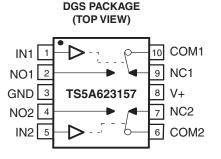
The TS5A623157 senses overshoot and undershoot events at the I/Os and responds by preventing voltage differentials from developing and turning the switch on.

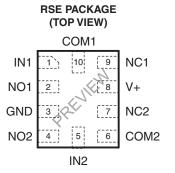
ORDERING INFORMATION

T _A	PACKAGE ⁽¹⁾	(2)	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
–40°C to 85°C	VSSOP (MSOP-10) - DGS	Tape and reel	TS5A623157DGSR	35R	
-40 C 10 85 C	QFN – RSE	Tape and reel	TS5A623157RSER	PREVIEW	

(1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.


IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO									
L	ON	OFF									
н	OFF	ON									


FUNCTION TABLE

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCDS253-SEPTEMBER 2007

SCDS253-SEPTEMBER 2007

SUMMARY OF CHARACTERISTICS $V_{\perp} = 5 V, T_{\Delta} = 25^{\circ}C$

Configuration	2:1 multiplexer/demultiplexer (1 \times SPDT)
Number of channels	2
ON-state resistance (r _{on})	10 Ω
ON-state resistance match (Δr_{on})	0.15 Ω
ON-state resistance flatness (r _{on(flat)})	2 Ω
Turn-on/turn-off time (t _{ON} /t _{OFF})	5 ns / 3.4 ns
Break-before-make time (t _{BBM})	0.5 ns
Charge injection (Q _C)	5 pC
Bandwidth (BW)	371 MHz
OFF isolation (O _{ISO})	–61 dB at 10 MHz
Crosstalk (X _{TALK})	–61 dB at 10 MHz
Total harmonic distortion (THD)	0.06%
Leakage current (I _{NO(OFF)} /I _{NC(OFF)})	±1 µA
Power-supply current (I ₊)	1.2 µA
Undershoot protection	-2 V
Overshoot protection	V ₊ + 2 V
Package options	10-pin VSSOP (DGS), 10-pin QFN (RSE)

Absolute Minimum and Maximum Ratings⁽¹⁾⁽²⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V+	Supply voltage range ⁽³⁾		-0.5	6.5	V
V _{NC} V _{NO} V _{COM}	Analog voltage range ⁽³⁾⁽⁴⁾⁽⁵⁾		-0.5	V ₊ + 0.5	V
I _{I/OK}	Analog port diode current	$V+ < V_{NC}, V_{NO}, V_{COM} < 0$		±50	mA
I _{NC} I _{NO} I _{COM}	On-state switch current	V_{NC} , V_{NO} , $V_{COM} = 0$ to V+		±50	mA
V _{IN}	Digital input voltage range ⁽³⁾⁽⁴⁾		-0.5	6.5	V
I _{IK}	Digital input clamp current	V ₁ < 0		-50	mA
l+ I _{GND}	Continuous current through V ₊ or GND			±100	mA
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum. (2)

(3) All voltages are with respect to ground, unless otherwise specified.

(4) (5) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

This value is limited to 5.5 V maximum.

Package Thermal Impedance

				UNIT
٥	Package thermal impedance ⁽¹⁾	DGS package	°C/W	
θ_{JA}		RSE package	243	C/W

(1) The package thermal impedance is calculated in accordance with JESD 51-7.

SCDS253-SEPTEMBER 2007

Electrical Characteristics for 5-V Supply

 $V_{+} = 4.5 \text{ V}$ to 5.5 V, $T_{A} = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST COND	ITIONS	TA	V.	MIN	TYP	MAX	UNIT
Analog Switch									
Analog signal range	V _{COM} , V _{NO} , V _{NC}					0		V+	V
Voltage undershoot	V _{IKU}	$0 \geq (I_{NC}, I_{NO}, or I_{COM}) \geq$	–50 mA		5.5 V			-2	V
Peak ON-state	r .	$0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$	Switch ON,	25°C	4.5 V		4.6	11	Ω
resistance	r _{peak}	$I_{COM} = -30 \text{ mA},$	See Figure 14	Full	4.5 V			13	12
		V_{NO} or $V_{NC} = 0$,		25°C			4	6.5	
		$I_{COM} = 30 \text{ mA}$		Full				8	
ON-state	r	V_{NO} or $V_{NC} = 2.4 V$,	Switch ON,	25°C	4.5 V		4	8	Ω
resistance	r _{on}	$I_{COM} = -30 \text{ mA}$	See Figure 14	Full	4.5 V			10	
		$V_{NO} \text{ or } V_{NC} = 4.5 \text{ V},$		25°C	_		5.5	10	
		$I_{COM} = -30 \text{ mA}$		Full				12	
ON-state				25°C			0.1	0.14	Ω
resistance match between channels	∆r _{on}	V_{NO} or V_{NC} = 3.15 V, I_{COM} = -30 mA,	Switch ON, See Figure 14	Full	4.5 V			0.15	
ON-state		$0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$	Switch ON,	25°C			1.5	2	
resistance flatness	r _{on(flat)}	$I_{COM} = -30 \text{ mA},$	See Figure 14	Full	4.5 V			4	Ω
NC, NO	I _{NC(OFF)} ,	V_{NC} or $V_{NO} = 0$ to V_+ ,	Switch OFF,	25°C			1	20	
OFF leakage current	I _{NO(OFF)}	$V_{COM} = V_+$ to 0	See Figure 15	Full	5.5 V			150	nA
NC, NO	I _{NC(ON)} ,	V_{NC} or $V_{NO} = 0$ to V_+ ,	Switch ON,	25°C			1	20	
ON leakage current	I _{NO(ON)}	$V_{COM} = Open,$	See Figure 16	Full	5.5 V			150	nA
СОМ		V_{NC} or V_{NO} = Open,	Switch ON,	25°C			1	20	
ON leakage current	I _{COM(ON)}	$V_{COM} = 0$ to V_+ ,	See Figure 16	Full	5.5 V			150	nA
Digital Control I	nput (IN)								
Input logic high	V _{IH}			Full		$V_{+} \times 0.7$		5.5	V
Input logic low	VIL			Full		0		$V_{\text{+}} \times 0.3$	V
Input leakage		$V_1 = 5.5 V \text{ or } 0$		25°C	5.5 V		0.1	10	nA
current	I _{IH} , I _{IL}	vj = 3.5 v 01 0		Full	5.5 V			30	TIA.

SCDS253-SEPTEMBER 2007

Electrical Characteristics for 5-V Supply (continued)

 V_{+} = 4.5 V to 5.5 V, T_{A} = –40°C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CON	DITIONS	T _A	۷.	MIN	TYP	MAX	UNIT
Dynamic									
				25°C	5 V	1	3.5	5	
Turn-on time	t _{ON}	$\label{eq:V_COM} \begin{array}{l} V_{COM} = V_{+} \text{ or GND}, \\ R_{L} = 500 \ \Omega, \end{array}$	C _L = 50 pF, See Figure 17	Full	4.5 V to 5.5 V	1		6	ns
			0 50 - 5	25°C	5 V	1	2.8	3.4	
Turn-off time	t _{OFF}	$\label{eq:V_COM} \begin{array}{l} V_{COM} = V_{+} \text{ or GND}, \\ R_{L} = 500 \ \Omega, \end{array}$	C _L = 50 pF, See Figure 17	Full	4.5 V to 5.5 V	1		3.8	ns
Output voltage during undershoot	V _{OUTU}	See Figure 24				2.5	V _{OH} – 0.3		V
Output voltage during overshoot	V _{оито}	See Figure 24					V _{OL} + 0.3	2	v
Break-before-		$V_{\rm NC} = V_{\rm NO} = V_{+}/2,$	$C_1 = 50 \text{ pF},$	25°C	5 V	0.5	5	12	
make time	t _{BBM}	$v_{\rm NC} = v_{\rm NO} = v_{\pm}/2,$ R _L = 50 Ω,	See Figure 18	Full	4.5 V to 5.5 V	0.5		14	ns
Charge injection	Q _C	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 0.1 nF, See Figure 22	25°C	5 V		110		рС
NC, NO OFF capacitance	C _{NC(OFF)} , C _{NO(OFF)}	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch OFF,	See Figure 16	25°C	5 V		5		pF
NC, NO ON capacitance	C _{NC(ON)} , C _{NO(ON)}	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch ON,	See Figure 16	25°C	5 V		14.5		pF
COM ON capacitance	C _{COM(ON)}	$V_{COM} = V_+ \text{ or GND},$ Switch ON,	See Figure 16	25°C	5 V		14.5		pF
Digital input capacitance	Cı	$V_I = V_+ \text{ or } GND,$	See Figure 16	25°C	5 V		3.5		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 19	25°C	5 V		371		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega,$ f = 10 MHz,	Switch OFF, See Figure 20	25°C	5 V		-61		dB
Crosstalk	X _{TALK}	$\begin{array}{l} R_{L}=50\ \Omega,\\ f=10\ MHz, \end{array}$	Switch ON, See Figure 21	25°C	5 V		-61		dB
Total harmonic distortion	THD	$ \begin{array}{l} R_L = 600 \; \Omega, \\ C_L = 50 \; pF, \end{array} $	f = 20 Hz to 20 kHz, See Figure 23	25°C	5 V		0.06		%
Supply		·							
Positive supply	I+	$V_{I} = V_{+}$ or GND,	Switch ON or	25°C	5.5 V		0.01	0.15	μA
current	'+		OFF	Full	5.5 v			1.2	μΛ

SCDS253-SEPTEMBER 2007

Electrical Characteristics for 3.3-V Supply

V₊ = 3 V to 3.6 V, T_A = -40° C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST COND	ITIONS	TA	V.	MIN	TYP	MAX	UNIT
Analog Switch									
Analog signal range	V _{COM} , V _{NO} , V _{NC}					0		V ₊	V
Voltage undershoot	V _{IKU}	$0 \geq (I_{NC}, I_{NO}, or I_{COM}) \geq$	–50 mA		3.6 V				V
Peak ON-state resistance	r _{peak}	$\begin{array}{l} 0 \leq (V_{NO} \text{ or } V_{NC}) \leq V_{+}, \\ I_{COM} = -24 \text{ mA}, \end{array}$	Switch ON, See Figure 14	25°C Full	3 V		8.9	14 18	Ω
ON-state		V_{NO} or $V_{NC} = 0$, $I_{COM} = 24 \text{ mA}$	Switch ON.	25°C Full			5.4	8	
resistance	r _{on}	$V_{NO} \text{ or } V_{NC} = 3 \text{ V},$ $I_{COM} = -24 \text{ mA}$	See Figure 14	25°C Full	3 V		7.4	12	Ω
ON-state resistance match between	Δr _{on}	V_{NO} or V_{NC} = 2.1 V, I_{COM} = -24 mA,	Switch ON, See Figure 14	25°C Full	3 V		0.1	0.2	Ω
channels ON-state resistance flatness	r _{on(flat)}	$0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$ $I_{COM} = -24 \text{ mA},$	Switch ON, See Figure 14	25°C Full	3 V		2.8	4	Ω
NC, NO OFF leakage current	I _{NC(OFF)} , I _{NO(OFF)}	V_{NC} or $V_{NO} = 0$ to V_+ , $V_{COM} = V_+$ to 0	Switch OFF, See Figure 15	25°C Full	3.6 V		0.5	10 100	nA
NC, NO ON leakage current	I _{NC(ON)} , I _{NO(ON)}	V_{NC} or $V_{NO} = 0$ to V_+ , $V_{COM} = Open$,	Switch ON, See Figure 16	25°C Full	3.6 V		0.5	10 100	nA
COM ON leakage current	I _{COM(ON)}	V_{NC} or V_{NO} = Open, V_{COM} = 0 to V_{+} ,	Switch ON, See Figure 16	25°C Full	3.6 V		0.5	10 100	nA
Digital Control I	nput (IN)								
Input logic high	V _{IH}			Full		$V_{+} \times 0.7$		5.5	V
Input logic low	V _{IL}			Full		0		$V_{+} imes 0.3$	V
Input leakage current	I _{IH} , I _{IL}	V _I = 5.5 V or 0		25°C Full	3.6 V		0.1	10 20	nA

SCDS253-SEPTEMBER 2007

Electrical Characteristics for 3.3-V Supply (continued)

 V_{\star} = 3 V to 3.6 V, T_{A} = –40°C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CON	DITIONS	TA	۷,	MIN	TYP	MAX	UNIT
Dynamic				- #					
				25°C	3.3 V	1	4.7	9.0	
Turn-on time	t _{ON}	$V_{COM} = V_+ \text{ or GND},$ $R_L = 500 \Omega,$	C _L = 50 pF, See Figure 17	Full	3 V to 3.6 V	1		10.0	ns
			0 50 55	25°C	3.3 V	1	3.2	6.3	
Turn-off time	t _{OFF}	$V_{COM} = V_+ \text{ or GND},$ $R_L = 500 \Omega,$	C _L = 50 pF, See Figure 17	Full	3 V to 3.6 V	1		7.0	ns
Output voltage during undershoot	V _{OUTU}	See Figure 24				2.5	V _{OH} – 0.3		V
Output voltage during overshoot	V _{OUTO}	See Figure 24					V _{OL} + 0.3	2	V
Break-before-		$V_{\rm NC} = V_{\rm NO} = V_{\rm +}/2,$	C _L = 50 pF,	25°C	3.3 V	0.5	7	17	
make time	t _{BBM}	$R_{\rm L} = 50 \ \Omega,$	See Figure 18	Full	3 V to 3.6 V	0.5		19.5	ns
Charge injection	Q _C	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 0.1 nF, See Figure 22	25°C	3.3 V		75		рС
NC, NO OFF capacitance	$\begin{array}{c} C_{NC(OFF)},\\ C_{NO(OFF)} \end{array}$	V_{NC} or $V_{NO} = V_+$ or GND, Switch OFF,	See Figure 16	25°C	3.3 V		5		pF
NC, NO ON capacitance	C _{NC(ON)} , C _{NO(ON)}	V_{NC} or $V_{NO} = V_+$ or GND, Switch ON,	See Figure 16	25°C	3.3 V		14.5		pF
COM ON capacitance	C _{COM(ON)}	$V_{COM} = V_+ \text{ or GND},$ Switch ON,	See Figure 16	25°C	3.3 V		14.5		pF
Digital input capacitance	CI	$V_1 = V_+ \text{ or GND},$	See Figure 16	25°C	3.3 V		3.5		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 19	25°C	3.3 V		370		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, f = 10 MHz,	Switch OFF, See Figure 20	25°C	3.3 V		-60		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega$, f = 10 MHz,	Switch ON, See Figure 21	25°C	3.3 V		-60		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 20 Hz to 20 kHz, See Figure 23	25°C	3.3 V		0.1		%
Supply									
Positive supply current	I+	$V_1 = V_+ \text{ or GND},$	Switch ON or OFF	25°C Full	3.6 V		0.05	0.5 0.75	μA

SCDS253-SEPTEMBER 2007

Electrical Characteristics for 2.5-V Supply

V₊ = 2.3 V to 2.7 V, T_A = -40° C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONI	DITIONS	TA	۷,	MIN	TYP	MAX	UNIT
Analog Switch									
Analog signal range	V _{COM} , V _{NO} , V _{NC}					0		V ₊	V
Voltage undershoot	V _{IKU}	0 mA ≥ (I_{NC} , I_{NO} , or I_{CO}	_M) ≥ <i>−</i> 50 mA		2.7 V				V
Peak ON-state	r	$0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$	Switch ON,	25°C	2.3 V		13.9	30	Ω
resistance	r _{peak}	$I_{COM} = -8 \text{ mA},$	See Figure 14	Full	2.3 V			35	12
		V_{NO} or $V_{NC} = 0$,		25°C	-		6.6	8.5	
ON-state	r _{on}	I _{COM} = 8 mA	Switch ON,	Full	2.3 V			12	Ω
resistance	on	V_{NO} or V_{NC} = 2.3 V,	See Figure 14	25°C	2.0 V		8.9	18	32
		$I_{COM} = -8 \text{ mA}$		Full				25	
ON-state resistance				25°C	-		0.05	0.3	
match between channels	Δr_{on}	V_{NO} or V_{NC} = 1.6 V, I_{COM} = -8 mA,	Switch ON, See Figure 14	Full	2.3 V			0.5	Ω
ON-state		$0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$	Switch ON.	25°C			5	15	
resistance flatness	r _{on(flat)}	$I_{COM} = -8 \text{ mA},$	See Figure 14	Full	2.3 V			20	Ω
NC, NO	I _{NC(OFF)} ,	V_{NC} or $V_{NO} = 0$ to V_{+} ,	Switch OFF,	25°C	0.7.1		0.1	10	
OFF leakage current	I _{NO(OFF)}	$V_{COM} = V_+$ to 0,	See Figure 15	Full	2.7 V			100	nA
NC, NO	I _{NC(ON)} ,	V_{NC} or $V_{NO} = 0$ to V_+ ,	Switch ON,	25°C			0.1	10	
ON leakage current	I _{NO(ON)}	V _{COM} = Open,	See Figure 16	Full	2.7 V			10	nA
СОМ		V_{NC} or V_{NO} = Open,	Switch ON.	25°C			0.1	10	
ON leakage current	I _{COM(ON)}	$V_{COM} = 0$ to V_+ ,	See Figure 16	Full	2.7 V			100	nA
Digital Control	Input (IN)								
Input logic high	V _{IH}			Full		$V_{+} imes 0.75$		5.5	V
Input logic low	V _{IL}			Full		0		$V_{+} imes 0.25$	V
Input leakage	կ _H , կլ	$V_1 = 5.5 V \text{ or } 0$		25°C	2.7 V		5	10	nA
current	ıH, ıL	vi = 0.0 v 0i 0		Full	2.1 V			20	

SCDS253-SEPTEMBER 2007

Electrical Characteristics for 2.5-V Supply (continued)

 V_{+} = 2.3 V to 2.7 V, T_{A} = –40°C to 85°C (unless otherwise noted)

SYMBOL	TEST COM	NDITIONS	TA	V ₊	MIN	TYP	MAX	UNIT
			25°C	2.5 V	2	6.2	9.6	
t _{ON}	$v_{COM} = v_+ \text{ or GND},$ $R_L = 500 \Omega,$	C _L = 50 pF, See Figure 17	Full	2.3 V to 2.7 V	2		12	ns
		0 50 - 5	25°C	2.5 V	1.5	4.5	7.0	
t _{OFF}	$v_{COM} = v_+ \text{ or GND},$ $R_L = 500 \Omega,$	C _L = 50 pF, See Figure 17	Full	2.3 V to 2.7 V	1.5		7.5	ns
V _{OUTU}	See Figure 24					V _{OH} – 0.3		V
V _{OUTO}	See Figure 24					V _{OL} + 0.3	2	V
	$V_{\rm exp} = V_{\rm exp} = V_{\rm e}/2$	$C_{\rm c} = 50 \rm pE$	25°C	2.5 V	0.5	10	25	
t _{BBM}	$R_{\rm L} = 50 \ \Omega,$	See Figure 18	Full	2.3 V to 2.7 V	0.5		28.5	ns
Q_{C}	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 0.1 nF, See Figure 22	25°C	2.5 V		58		рС
C _{NC(OFF)} , C _{NO(OFF)}	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch OFF,	See Figure 16	25°C	2.5 V		5		pF
C _{NC(ON)} , C _{NO(ON)}	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch ON,	See Figure 16	25°C	2.5 V		14.5		pF
C _{COM(ON)}	$V_{COM} = V_+ \text{ or GND},$ Switch ON,	See Figure 16	25°C	2.5 V		14.5		pF
CI	$V_I = V_+ \text{ or GND},$	See Figure 16	25°C	2.5 V		3.5		pF
BW	$R_L = 50 \Omega$, Switch ON,	See Figure 19	25°C	2.5 V		367		MHz
O _{ISO}	$R_L = 50 \Omega$, f = 10 MHz,	Switch OFF, See Figure 20	25°C	2.5 V		-60		dB
X _{TALK}	$R_L = 50 \Omega,$ f = 10 MHz,	Switch ON, See Figure 21	25°C	2.5 V		-60		dB
THD	$ \begin{array}{l} R_{L} = 600 \ \Omega, \\ C_{L} = 50 \ pF, \end{array} $	f = 20 Hz to 20 kHz, See Figure 23	25°C	2.5 V		0.15		%
				.				
l+	$V_I = V_+ \text{ or } GND,$	Switch ON or OFF	25°C Full	2.7 V		50	100 550	nA
	t _{ON} t _{OFF} V _{OUTU} V _{OUTU} t _{BBM} Q _C C _{NC(OFF)} , C _{NC(ON)} , C _{NO(ON)} C _{COM(ON)} C _{COM(ON)} C _I BW O _{ISO} X _{TALK} THD	t_{ON} $V_{COM} = V_+ \text{ or GND}, R_L = 500 \Omega,$ t_{OFF} $V_{COM} = V_+ \text{ or GND}, R_L = 500 \Omega,$ V_{OUTU} See Figure 24 V_{OUTO} See Figure 24 t_{BBM} $V_{NC} = V_{NO} = V_+/2, R_L = 50 \Omega,$ Q_C $V_{GEN} = 0, R_{GEN} = 0,$ Q_C $V_{NC} \text{ or } V_{NO} = V_+ \text{ or } O, R_{GEN} = 0,$ $C_{NC(OFF)}, C_{NO(OFF)}$ $V_{NC} \text{ or } V_{NO} = V_+ \text{ or } O, Switch OFF,$ $C_{NC(ON)}, C_{NO(ON)}$ $V_{COM} = V_+ \text{ or } GND, Switch ON,$ $C_{COM(ON)}$ $V_{COM} = V_+ \text{ or } GND, Switch ON,$ C_{I} $V_I = V_+ \text{ or } GND,$ BW $R_L = 50 \Omega, f = 10 \text{ MHz},$ X_{TALK} $R_L = 600 \Omega, C_L = 50 \text{ pF},$	ton $V_{COM} = V_+ \text{ or GND}, R_L = 500 \Omega,$ $C_L = 50 \text{ pF}, \text{ See Figure 17}$ toFF $V_{COM} = V_+ \text{ or GND}, R_L = 500 \Omega,$ $C_L = 50 \text{ pF}, \text{ See Figure 17}$ V_{OUTU} See Figure 24 V_{OUTO} See Figure 24 V_{OUTO} See Figure 24 $C_L = 50 \text{ pF}, \text{ See Figure 18}$ Q_{OUTO} See Figure 0, R_L = 50 \Omega, See Figure 18 $C_L = 0.1 \text{ nF}, \text{ See Figure 22}$ Q_C $V_{GEN} = 0, \text{ See Figure 22}$ $C_L = 0.1 \text{ nF}, \text{ See Figure 22}$ $C_{NC(OFF)}, C_{NO(OFF)}$ $V_{NC} \text{ or } V_{NO} = V_+ \text{ or } \text{ See Figure 16}$ See Figure 16 $C_{NO(OFF)}$ $V_{NC} \text{ or } V_{NO} = V_+ \text{ or } \text{ GND}, \text{ See Figure 16}$ See Figure 16 $C_{COM(ON)}$ $V_{COM} = V_+ \text{ or GND}, \text{ See Figure 16}$ Switch ON, See Figure 16 BW $R_L = 50 \Omega, \text{ Switch ON}, \text{ See Figure 19}$ Switch ON, See Figure 20 X_{TALK} $R_L = 50 \Omega, \text{ Switch ON}, \text{ See Figure 21}$ THD $R_L = 600 \Omega, \text{ C}_L = 50 \text{ PF}, \text{ See Figure 23}$	ton $V_{COM} = V_{+} \text{ or GND}, R_{L} = 50 \text{ pF}, See Figure 17 \frac{25^{\circ}C}{Full} toFF V_{COM} = V_{+} \text{ or GND}, R_{L} = 50 \text{ pF}, See Figure 17 \frac{25^{\circ}C}{Full} V_{OUTU} See Figure 24 T_{UIII} V_{OUTU} See Figure 24 T_{UIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

SCDS253-SEPTEMBER 2007

Electrical Characteristics for 1.8-V Supply

V₊ = 1.65 V to 1.95 V, T_A = -40° C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST COND	DITIONS	TA	V+	MIN	TYP	MAX	UNIT
Analog Switch									
Analog signal range	V _{COM} , V _{NO} , V _{NC}					0		V ₊	V
Voltage undershoot	V _{IKU}	$0 \geq (I_{NC}, I_{NO}, or I_{COM}) \geq$: −50 mA		1.95 V				V
Peak		$0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$	Switch ON	25°C			41.1	60	
ON-state resistance	r _{peak}	$I_{COM} = -4 \text{ mA},$	See Figure 14	Full	1.65 V			120	Ω
		V_{NO} or $V_{NC} = 0$,		25°C	_		9.2	15	
ON-state	r _{on}	$I_{COM} = 4 \text{ mA}$	Switch ON,	Full	1.65 V			15	Ω
resistance	'on	V_{NO} or V_{NC} = 1.65 V,	See Figure 14	25°C	1.00 V		1.8	40	32
		$I_{COM} = -4 \text{ mA}$		Full				45	
ON-state				25°C	_		0.1	0.6	I
resistance match between channels	Δr_{on}	V_{NO} or V_{NC} = 1.15 V, I_{COM} = -4 mA,	Switch ON, See Figure 14	Full 1.65 V			0.8	Ω	
ON-state		$0 \le (V_{NO} \text{ or } V_{NC}) \le V_+,$	Switch ON	25°C			26.5	80	
resistance flatness	r _{on(flat)}	$I_{COM} = -4 \text{ mA},$	See Figure 14	Full	1.65 V			100	Ω
NC, NO	I _{NC(OFF)} ,	V_{NC} or $V_{NO} = 0$ to V_{+}	Switch OFF,	25°C			0.05	10	
OFF leakage current	I _{NO(OFF)}	$V_{\rm COM} = V_+ \text{ to } 0,$	See Figure 15	Full	1.95 V			100	nA
NC, NO	I _{NC(ON)} ,	V_{NC} or $V_{NO} = 0$ to V_+ ,	Switch ON,	25°C			0.1	10	
ON leakage current	I _{NO(ON)}	$V_{COM} = Open,$	See Figure 16	Full	1.95 V			100	μA
COM		V _{NC} or V _{NO} = Open,	Switch ON,	25°C			0.1	10	
ON leakage current	I _{COM(ON)}	$V_{COM} = 0$ to V_+ ,	See Figure 16	Full 1.95 V			100	nA	
Digital Control In	nput (IN)								
Input logic high	VIH			Full		$V_{+} imes 0.75$		5.5	V
Input logic low	V _{IL}			Full		0		$V_{\text{+}} \times 0.25$	V
Input leakage current	I _{IH} , I _{IL}	V _I = 5.5 V or 0		25°C Full	1.95 V		0.05	1 20	nA

PRODUCT PREVIEW

SCDS253-SEPTEMBER 2007

Electrical Characteristics for 1.8-V Supply (continued)

 V_{+} = 1.65 V to 1.95 V, T_{A} = $-40^{\circ}C$ to 85°C (unless otherwise noted)

PARAMETER SYMBOL		TEST CON	DITIONS	T _A	V.	V ₊ MIN TYP			
Dynamic									
				25°C	1.8 V		9.6	23	
Turn-on time	t _{ON}	$V_{COM} = V_{+} \text{ or GND},$ $R_{L} = 500 \ \Omega,$	$C_L = 50 \text{ pF},$ See Figure 17	Full	1.65 V to 1.95 V			24	ns
				25°C	1.8 V		6.3	10	
Turn-off time	t _{OFF}	$V_{COM} = V_{+} \text{ or GND},$ $R_{L} = 500 \Omega,$	C _L = 50 pF, See Figure 17	Full	1.65 V to 1.95 V			12	ns
Output voltage during undershoot	V _{OUTU}	See Figure 24					V _{OH} – 0.3		V
Output voltage during overshoot	V _{OUTO}	See Figure 24					V _{OL} + 0.3		V
				25°C	1.8 V	0.5	18	50	
Break-before- make time	t _{BBM}	$\label{eq:VNC} \begin{split} V_{\text{NC}} &= V_{\text{NO}} = V_{\text{+}}/2, \\ R_{\text{L}} &= 50 \ \Omega, \end{split}$	C _L = 50 pF, See Figure 18	Full	1.65 V to 1.95 V	0.5		55	ns
Charge injection	Q _C	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 0.1 nF, See Figure 22	25°C	1.8 V		40		рС
NC, NO OFF capacitance	C _{NC(OFF)} , C _{NO(OFF)}	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch OFF,	See Figure 16	25°C	1.8 V		5.0		pF
NC, NO ON capacitance	C _{NC(ON)} , C _{NO(ON)}	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch ON,	See Figure 16	25°C	1.8 V		14.5		pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = V ₊ or GND, Switch ON,	See Figure 16	25°C	1.8 V		14.5		pF
Digital input capacitance	CI	$V_I = V_+ \text{ or } GND,$	See Figure 16	25°C	1.8 V		3.5		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 19	25°C	1.8 V		369		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, f = 10 MHz,	Switch OFF, See Figure 20	25°C	1.8 V		-60		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega,$ f = 10 MHz,	Switch ON, See Figure 21	25°C	1.8 V		-60		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 20 Hz to 20 kHz, See Figure 23	25°C	1.8 V		0.4		%
Supply									
Positive supply current	I+	$V_1 = V_+ \text{ or GND},$	Switch ON or OFF	25°C Full	1.95 V		0.1	50 400	nA

SCDS253-SEPTEMBER 2007

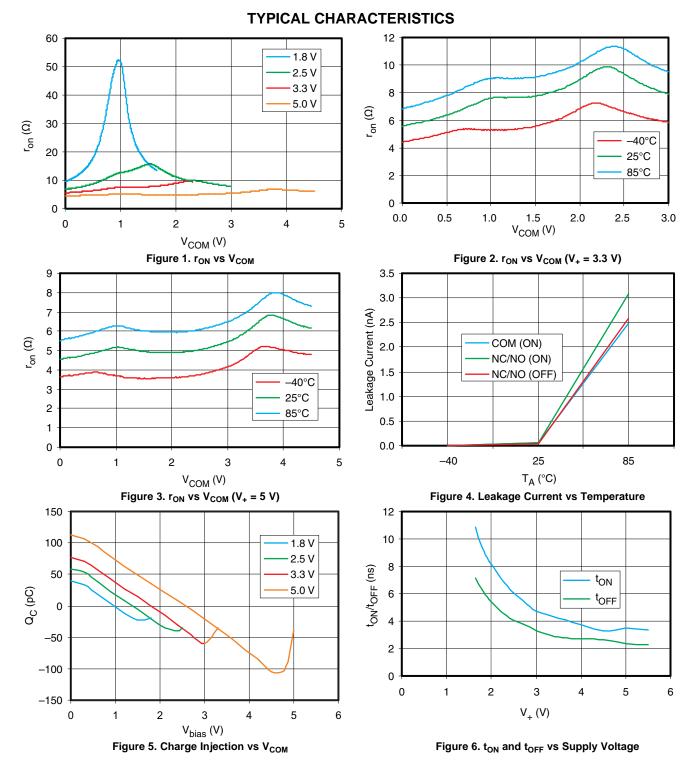
PIN DESCRIPTION

PIN NO.	NAME	DESCRIPTION
1	IN1	Digital control to connect COM to NO or NC
2	NO1	Normally open
3	GND	Digital ground
4	NO2	Normally open
5	IN2	Digital control to connect COM to NO or NC
6	COM2	Common
7	NC2	Normally closed
8	V+	Power supply
9	NC1	Normally closed
10	COM1	Common

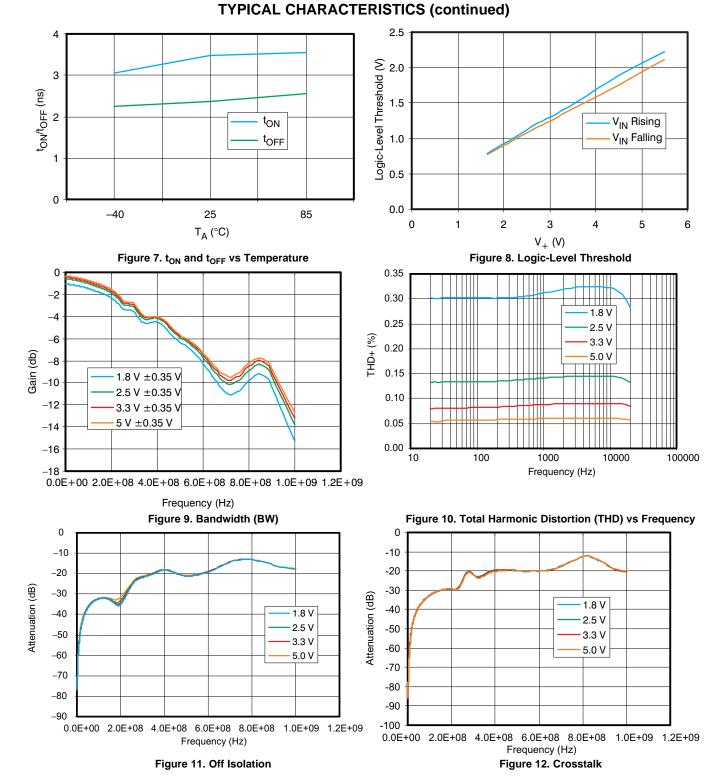
PARAMETER DESCRIPTION

SYMBOL	DESCRIPTION									
V _{COM}	Voltage at COM									
V _{NC}	Voltage at NC									
V _{NO}	Voltage at NO									
r _{on}	Resistance between COM and NC or COM and NO ports when the channel is ON									
∆r _{on}	Difference of r _{on} between channels									
r _{on(flat)}	Difference between the maximum and minimum value of ron in a channel over the specified range of conditions									
I _{NC(OFF)}	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state under worst-case input and output conditions									
I _{NO(OFF)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state under worst-case input and output conditions									
I _{NC(ON)}	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (COM) being open									
I _{NO(ON)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) being open									
I _{COM(ON)}	Leakage current measured at the COM port, with the corresponding channel (NO to COM or NC to COM) in the ON state and the output (NC or NO) being open									
V _{IH}	Minimum input voltage for logic high for the control input (IN)									
V _{IL}	Minimum input voltage for logic low for the control input (IN)									
V _{IN}	Voltage at control input (IN)									
I _{IH} , I _{IL}	Leakage current measured at control input (IN)									
t _{ON}	Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog outputs (COM/NC/NO) signal when the switch is turning ON.									
t _{OFF}	Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog outputs (COM/NC/NO) signal when the switch is turning OFF.									
t _{BBM}	Break-before-make time. This parameter is measured under the specified range of conditions and by the propagation delay between the output of two adjacent analog channels (NC and NO) when the control signal changes state.									
Q _C	Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NC, NO, or COM) output. This is measured in coulombs =) and measured by the total charge induced due to switching of the control input. Charge injection, $Q_c = C_L \times \Delta V_O$, C_L is the load capacitance and ΔV_O is the change in analog output voltage.									
C _{NC(OFF)}	Capacitance at the NC port when the corresponding channel (NC to COM) is OFF									
C _{NO(OFF)}	Capacitance at the NO port when the corresponding channel (NC to COM) is OFF									
C _{NC(ON)}	Capacitance at the NC port when the corresponding channel (NC to COM) is ON									
C _{NO(ON)}	Capacitance at the NO port when the corresponding channel (NC to COM) is ON									
C _{COM(ON)}	Capacitance at the COM port when the corresponding channel (COM to NC or COM to NO) is ON									
CI	Capacitance of control input (IN)									
O _{ISO}	OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF state.									

SCDS253-SEPTEMBER 2007


PARAMETER DESCRIPTION (continued)

SYMBOL	DESCRIPTION								
X _{TALK}	Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to NC). This is measured at a specific frequency and in dB.								
BW	Bandwidth of the switch. This is the frequency where the gain of an ON channel is -3 dB below the dc gain.								
THD	Total harmonic distortion is defined as the ratio of the root mean square (RMS) value of the second, third, and higher harmonics to the magnitude of fundamental harmonic.								
l+	Static power-supply current with the control (IN) pin at V+ or GND								
V _{OUTU}	Output voltage during an undershoot event. This is measured by turning off a specific channel and applying an undershoot voltage at the input of the switch.								
V _{OUTO}	Output voltage during an overshoot event. This is measured by turning off a specific channel and applying an overshoot voltage at the input of the switch.								



TS5A623157 DUAL 10-Ω SPDT ANALOG SWITCH WITH UNDERSHOOT/OVERSHOOT VOLTAGE PROTECTION

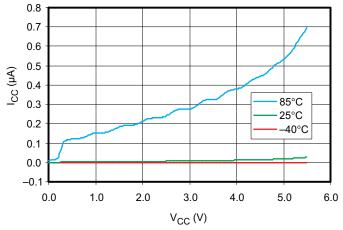
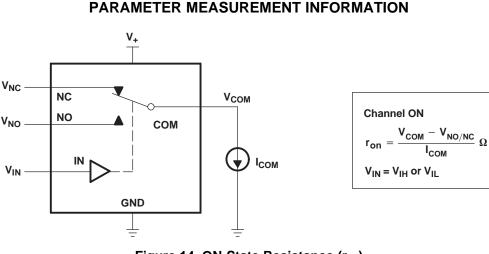
SCDS253-SEPTEMBER 2007

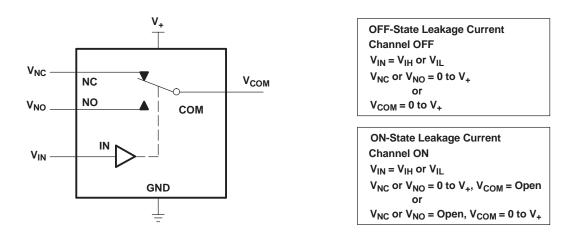
SCDS253-SEPTEMBER 2007

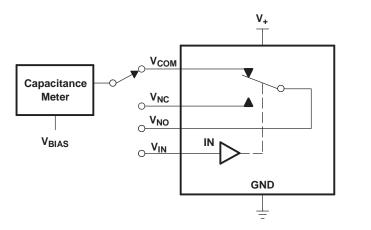
IEXAS

RUMENTS

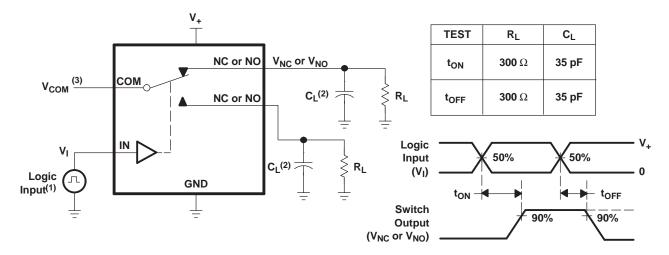
TYPICAL CHARACTERISTICS (continued)

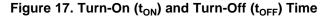

Figure 13. Supply Current vs Supply Voltage


SCDS253-SEPTEMBER 2007

 $V_{BIAS} = V_{+}$ or GND $V_{IN} = V_{IH}$ or V_{IL} Capacitance is measured at NC, NO, COM, and IN inputs during


NO, COM, and IN inputs during ON and OFF conditions.

SCDS253-SEPTEMBER 2007


PARAMETER MEASUREMENT INFORMATION (continued)

⁽¹⁾ All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_f < 5 ns, t_f < 5 ns.

⁽²⁾ C_L includes probe and jig capacitance.

 $^{(3)}$ See Electrical Characteristic for V_{COM}.

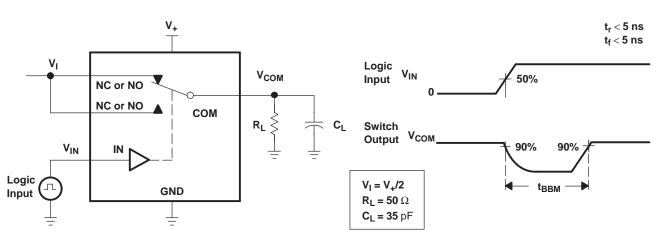
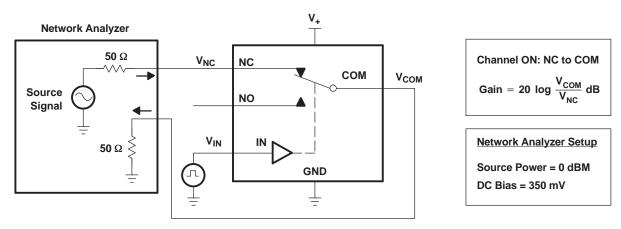



Figure 18. Break-Before-Make (t_{BBM}) Time

SCDS253-SEPTEMBER 2007

PARAMETER MEASUREMENT INFORMATION (continued)

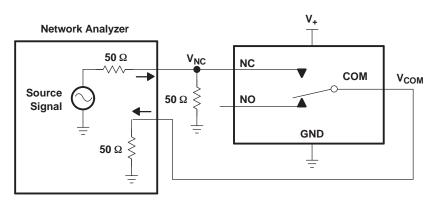
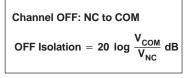
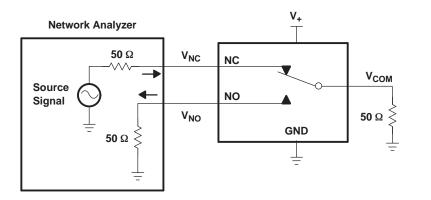




Figure 20. OFF Isolation (O_{ISO})

Network Analyzer Setup Source Power = 0 dBM DC Bias = 350 mV

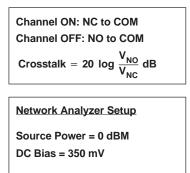
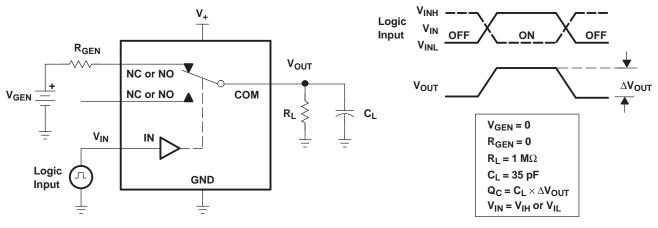



Figure 21. Crosstalk (X_{TALK)}

SCDS253-SEPTEMBER 2007

PARAMETER MEASUREMENT INFORMATION (continued)

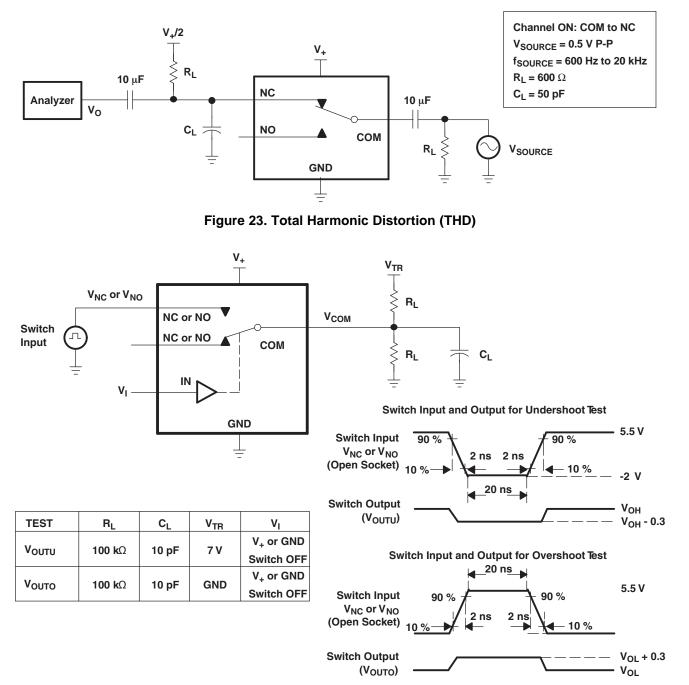


Figure 24. Undershoot and Overshoot Test

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TS5A623157DGSR	ACTIVE	VSSOP	DGS	10	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	35R	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

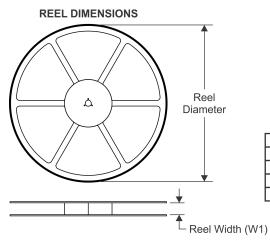
(⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

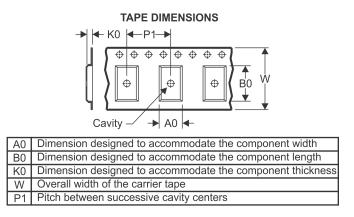
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

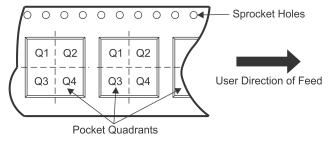
www.ti.com

PACKAGE OPTION ADDENDUM


10-Jun-2014

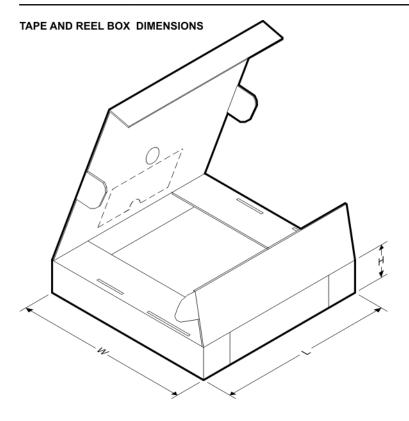

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


,	*All dimensions are nominal												
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	TS5A623157DGSR	VSSOP	DGS	10	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

TEXAS INSTRUMENTS

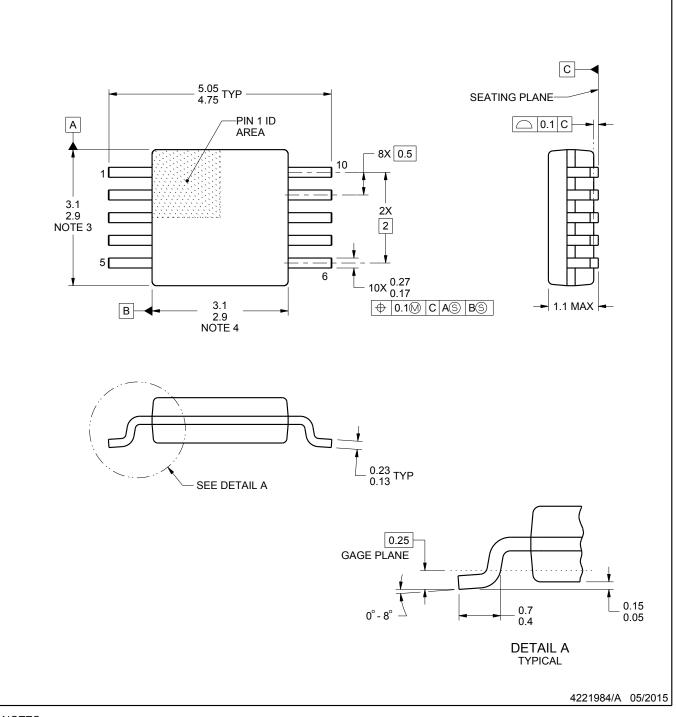
www.ti.com

PACKAGE MATERIALS INFORMATION

3-Aug-2017

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS5A623157DGSR	VSSOP	DGS	10	2500	358.0	335.0	35.0


DGS0010A

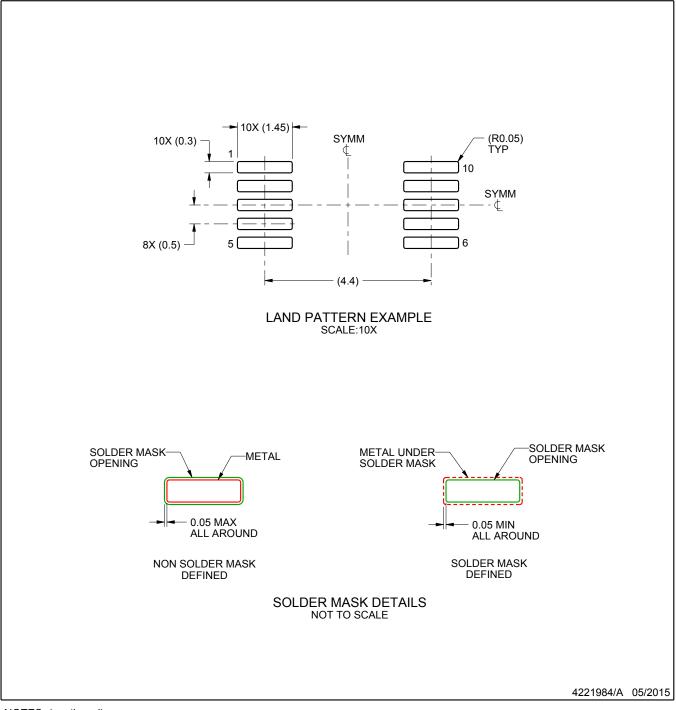
PACKAGE OUTLINE

VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187, variation BA.



DGS0010A

EXAMPLE BOARD LAYOUT

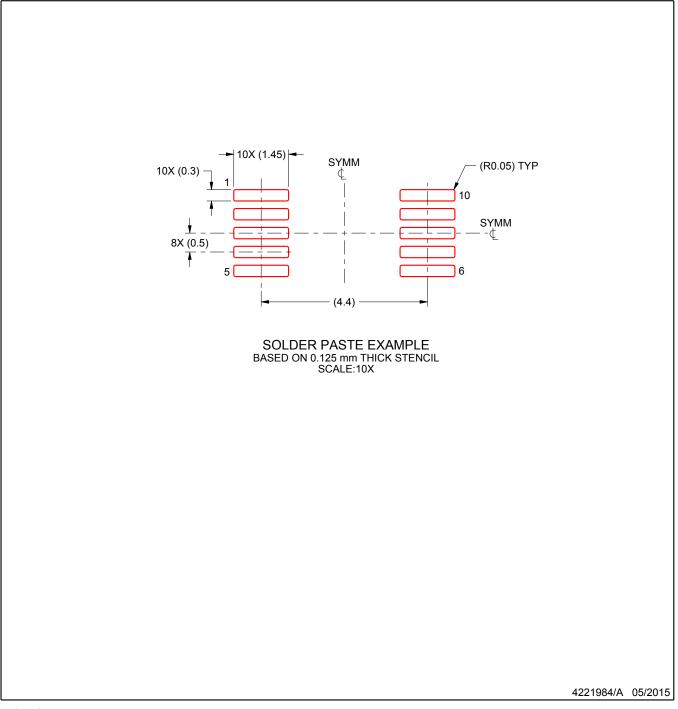
VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DGS0010A

EXAMPLE STENCIL DESIGN

VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated