

APPROVAL SHEET

Approval Specification	Customer's Approval Certificate
то:	Please return this copy as a certification of your approval
Part No.:	Checked & Approved by:
Customer's Part No.:	Date:

BEIJING ZHONGXUN SIFANG SCIENCE & TECHNOLOGY CO.,LTD.

Tel: +86-010-58937383 Fax: +86-010-58937263 E-mail: zxsf_sales@163.com

QQ: 2109300457

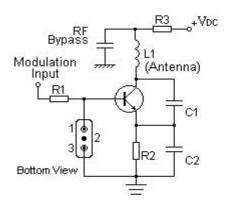
Website: http://www.bjzxsf.net

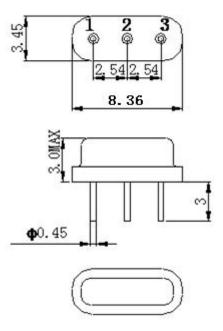
Add: No 201, Block A. Building 3. Yongjie Beilu

Yongfeng high-tech industrial base Haidian District Beijing city

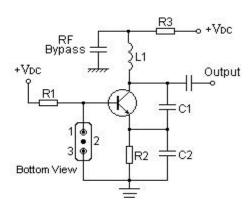
Part No.	:	R433
Pages	:	6
Date	:	2013/3/28
Revision	:	1.0

Prepared by:	直接
Checked by:	杨玄伟
Approved by:	21 8899


Features


- 1-port Resonator
- Metal Case for **D11**
- Package size 8.36x3.45x3.00 mm³
- RoHS compatible
- Electrostatic Sensitive Device(ESD)

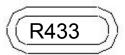
Application


Typical Low-Power Transmitter Application

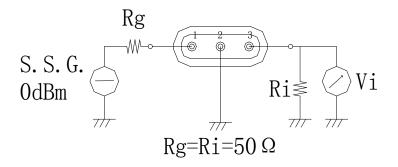
Package Dimensions (D11)

Typical Local Oscillator Application

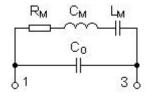
Pin Configuration

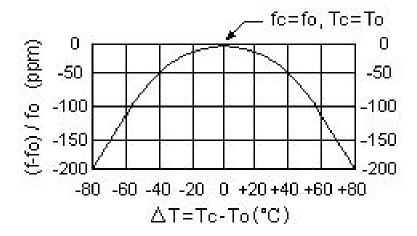

1	Input/output		
3	Output/Input		
2	Case Ground		

R	SAW Resonator
11	OAW Nesonator


Marking

433


Part number


Test Circuit

Equivalent LC Model

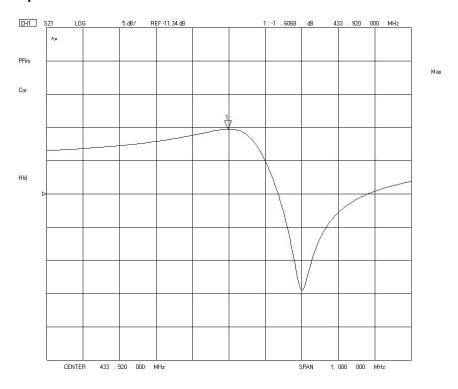
Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include LC component temperature contributions.

Performance

Maximum Rating

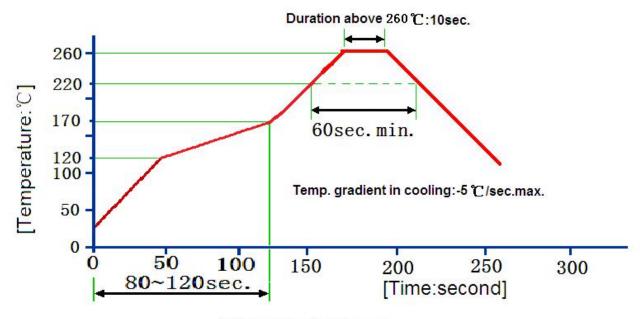
ltem		Value	Unit
DC Voltage	V _{DC}	±30	V
Operation Temperature	Т	-40 ~ +85	$^{\circ}$
Storage Temperature	T _{stg}	-55 ~ +125	${\mathbb C}$
RF Power Dissipation	Р	10	dBm


Electronic Characteristics

Test Temperature: $25^{\circ}C \pm 2^{\circ}C$

Terminating source impedance: 50Ω Terminating load impedance: 50Ω

	Item		Minimum	Typical	Maximum	Unit
Center	Absolute Frequency	fc		433.92		MHz
Frequency	Tolerance from 433.92MHz	△fc		±75		KHz
Insertion Loss(r	nin)	IL		1.4	2.0	dB
Quality Factor	Unloaded Q	Qu		14215		
Quality Factor	50Ω Loaded Q	QL		1791		
	Turnover Temperature	T ₀	10	25	40	$^{\circ}$
Temperature Stability	Turnover Frequency	f ₀		f _c		KHz
-	Frequency Temperature Coefficient	FTC		0.032		ppm/℃
Frequency Aging				≤10		ppm/yr
DC Insulation R	esistance between Any Two Pins		1.0			ΜΩ
RF Equivalent	Motional Resistance	R _M		15	26	Ω
	Motional Inductance	L _M		98.9		μН
RLC Model	Motional Capacitance	См		2.35		fF
	Static Capacitance	C ₀	2.8	3.1	3.4	pF


Frequency Response

Reliability (The SAW components shall remain electrical performance after tests)

No.	Test item	Test condition		
1	Temperature Storage	(1) Temperature: 85℃±2℃, Duration: 250h, Recovery time: 2h±0.5h (2) Temperature: -40℃±3℃, Duration: 250h, Recovery time: 2h±0.5h		
2	Humidity Test	Conditions: 60 ℃±2℃ , 90~95% RH Duration: 250h		
3	Thermal Shock	Heat cycle conditions: TA=-40°C±3°C, TB=85°C±2°C, t1=t2=30min, Switch time: ≤3min , Cycle time: 100 times , Recovery time : 2h±0.5h.		
4	Vibration Fatigue	Frequency of vibration: 10~55Hz Amplitude:1.5mm Directions: X,Y and Z Duration: 2h		
5	Drop Test	Cycle time: 10 times Height: 1.0m		
6	Solder Ability Test	Temperature: 245 ℃ ±5 ℃ Duration: 3.0s5.0s Depth: DIP2/3 , SMD1/5		
7	Resistance to Soldering Heat	(1)Thickness of PCB:1mm , Solder condition: $260^\circ\!$		

Recommended Reflow Soldering Diagram

Reflow cycles:3 cycles max.

Notes

- 1. As a result of the particularity of inner structure of SAW products, it easy to be breakdown by electrostatic, so we should pay attention to **ESD protect** in the test.
- 2. **Static voltage** between signal load and ground may cause deterioration and destruction of the component. Please avoid static voltage.
- 3. **Ultrasonic cleaning** may cause deterioration and destruction of the component. Please avoid ultrasonic cleaning.

- 6 -

- 4. Only leads of component may **be soldered**. Please avoid soldering another part of component.
- 5. There is a close relationship between the device's performance and **matching network**. The specifications of this device are based on the test circuit shown above. L and C values may change depending on board layout. Values shown are intended as a guide only.