maxscend?

MXD8546

X-DPDT Switch for 0.4~3.8G Application

This document contains information that is confidential and proprietary to Maxscend Microelectronics Company Limited (Maxscend) and may not be reproduced in any form without express written consent of Maxscend. No transfer or licensing of technology is implied by this document.

General Description

The MXD8546 is a CMOS, Silicon-On-Insulator (SOI) double-pole, double-throw (DPDT) switch. The switch provides high linearity performance, low insertion loss and high isolation.

Switching is controlled by one control voltage, V1. Depending on the logic voltage level applied to this pin, the RF1 and RF2 pins connect to one of the two other RF port pins (RF3 or RF4) through a low insertion loss path, while maintaining a high isolation path to the alternate port. No external DC blocking capacitors are required on the RF path as long as no DC voltage is applied externally.

The MXD8546 DPDT switch is provided in a compact Quad Flat No-Lead (QFN) $1.83 \times 1.83 \mathrm{~mm}$ package. A functional block diagram is shown in Figure 1. The pin configuration and package are shown in Figure 2. Signal pin assignments and functional pin descriptions are provided in Table 1.

Applications

- Simultaneous voice and LTE systems
- Diversity antenna switching

Features

- Single control voltage input
- Broadband frequency range: 0.4 to 3.8 GHz
- Low insertion loss: 0.55 dB @ 2.7 GHz
- \quad P0.1dB of 37 dBm
- No DC blocking capacitors required
- Positive control voltage range: 1.8 to 3.3 V
- Small, QFN (12-pin, $1.83 \times 1.83 \mathrm{~mm}$) package

Functional Block Diagram and Pin Function

Figure 1. Functional Block Diagram

Figure 2. Pin Diagram

Application Circuit

Figure 3. MXD8546 Evaluation Board Schematic

Table 1. Pin Description

Pin No.	Name	Description	Pin No.	Name	Description
1	GND	Ground.	7	GND	Ground.
2	VDD	DC power supply	8	RF2	RF port 2
3	GND	Ground.	9	GND	Ground.
4	V1	DC control voltage 1.	10	RF3	RF Port 3
5	GND	Ground.	11	GND	Ground.
6	RF4	RF port 4	12	RF1	RF port 1

Note: Bottom ground paddles must be connected to ground.

Table 2. Truth Table

V1	State
1	RF3 to RF1,RF4 to RF2
0	RF3 to RF2, RF4 to RF1

Note: "1" $=1.8$ to $3.1 \mathrm{~V}, " 0$ " $=-0.20$ to +0.45 V ;
Any state other than described in this Table places the switch into an undefined state.

Recommended Operation Range

Table 3.

Parameters	Symbol	Min	Typ	Max	Units
Operation Frequency	$\mathrm{f1}$	0.4	-	3.8	GHz
Power supply	VDD	1.8	2.8	3.3	V
Switch Control Voltage High	VCTL_H 2	1.5	1.8	3.3	V
Switch Control Voltage Low	V $_{\text {CTL_L }}$	-0.2	0	0.4	V

Specifications

Table 4. Electrical Specifications

Parameter	Symbol	Specification			Units	Test Condition
		Min.	Typical	Max.		
DC Specifications						
Control voltage:						
Low	Vctl_L	0	0	0.3	V	
High	V $\mathrm{CtLL}_{\text {ch }}$	1.5	1.8	3.3	V	
Supply voltage	VDD	1.8	2.8	3.3	V	
Supply current	IDD		60	85		$\mathrm{V}_{\mathrm{DD}}=2.8 \mathrm{~V}$
Control current	ICTL		1	5	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CTL }}=1.8 \mathrm{~V}$
RF Specifications						
Insertion loss (RF1/RF2 to RF3/RF4)	IL		$\begin{aligned} & \hline 0.45 \\ & 0.50 \\ & 0.55 \\ & 0.70 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.7 \text { to } 1.0 \mathrm{GHz} \\ & 1.0 \text { to } 2.2 \mathrm{GHz} \\ & 2.5 \text { to } 2.7 \mathrm{GHz} \\ & 3.4 \text { to } 3.8 \mathrm{GHz} \\ & \hline \end{aligned}$
Isolation (RF1/RF2 to RF3/RF4, RF1 to RF2, RF3 to RF4)	ISO	$\begin{aligned} & 40 \\ & 36 \\ & 32 \\ & 26 \\ & \hline \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \\ & 35 \\ & 28 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.7 \text { to } 1.0 \mathrm{GHz} \\ & 1.0 \text { to } 2.2 \mathrm{GHz} \\ & 2.5 \text { to } 2.7 \mathrm{GHz} \\ & 3.4 \text { to } 3.8 \mathrm{GHz} \end{aligned}$
Input return loss (RF1/RF2 to RF3/RF4)	RL	15	20		dB	0.7 to 3.8 GHz
0.1 dB Compression Point (RF1/RF2 to RF3/RF4)	P0.1dB		+37		dBm	0.7 to 3.8 GHz
$2^{\text {nd }}$ Harmonic (RF1/RF2 to RF3/RF4)	2 ¢o		-50		dBm	$\begin{aligned} & \text { fo }=824 \text { to } 915 \mathrm{MHz}, \mathrm{P}_{\mathrm{IN}}=+35 \\ & \mathrm{dBm} \end{aligned}$
$3^{\text {rd }}$ Harmonic(RF1/RF2 to RF3/RF4)	3fo		-50		dBm	
Switching on time			2	5	$\mu \mathrm{s}$	50\% VCTL to 90\% RF
Switching off time			2	5	$\mu \mathrm{s}$	50\% VCTL to 10\% RF
Startup time			10		$\mu \mathrm{s}$	Power off state to any RF switch state

Absolute Maximum Ratings

Table 5. Maximum ratings

Parameters	Symbol	Minimum	Maximum	Units
Supply voltage	$V_{\text {DD }}$	+1.8	+3.6	V
Digital control voltage	$\mathrm{V}_{\text {cti }}$	-0.3	+3.3	V
RF input power	Pin		+40	dBm
Operating temperature	Top	-30	+85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tsta	-55	+150	${ }^{\circ} \mathrm{C}$
Electrostatic Discharge Human body model (HBM), Class 2 Machine Model (MM), Class B Charged device model (CDM), Class III	$\begin{aligned} & \text { ESD_HBM } \\ & \text { ESD_MM } \\ & \text { ESD_CDM } \end{aligned}$		$\begin{gathered} 2000 \\ 200 \\ 500 \end{gathered}$	V

Note: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device

Package Outline Dimension

Figure 4. package outline dimension

Reflow Chart

Figure 5. Recommended Lead-Free Reflow Profile
Table 6 Reflow condition

Profile Parameter	Lead-Free Assembly, Convection, IR/Convection
Ramp-up rate $\left(\mathrm{TS}_{\max }\right.$ to $\left.\mathrm{T}_{\mathrm{p}}\right)$	$3^{\circ} \mathrm{C} /$ second max.
Preheat temperature $\left(\mathrm{TS}_{\text {min }}\right.$ to $\left.\mathrm{TS}_{\max }\right)$	$150^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
Preheat time $\left(\mathrm{t}_{\mathrm{s}}\right)$	$60-180$ seconds
Time above $\mathrm{TL}, 217^{\circ} \mathrm{C}\left(\mathrm{t}_{\mathrm{L}}\right)$	$60-150$ seconds
Peak temperature $\left(\mathrm{T}_{\mathrm{p}}\right)$	$260^{\circ} \mathrm{C}$
Time within $5^{\circ} \mathrm{C}$ of peak temperature $\left(\mathrm{t}_{\mathrm{p}}\right)$	$20-40$ seconds
Ramp-down rate	$6^{\circ} \mathrm{C} /$ second max.
Time $25^{\circ} \mathrm{C}$ to peak temperature	8 minutes max.

ESD Sensitivity

Integrated circuits are ESD sensitive and can be damaged by static electric charge. Proper ESD protection techniques should be used when handling these devices.

RoHS Compliant

This product does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE), and are considered RoHS compliant.

