## Thyristor Surge Suppressors (TSS) Data Sheet

## Description

DO-214AC Thyristor solid state protection thyristor protect telecommunications equipment such as modems, line cards, fax machines, and other CPE.
$P$ Series devices are used to enable equipment to meet various regulatory requirements including GR 1089, ITU K.20, K. 21 and K.45, IEC 60950, UL 60950, and TIA-968 (formerly known as FCC Part 68).


## Features

Compared to surge suppression using other technologies, P Series devices offer absolute surge protection regardless of the surge current available and the rate of applied voltage (dv/dt). P Series devices:

- Cannot be damaged by voltage

E Eliminate hysteresis and heat dissipation typically found with clamping devices

- Eliminate voltage overshoot caused by fast-rising transients
- Are non-degenerative
- Will not fatigue
- Have low capacitance, making them ideal for high-speed transmission equipment

■ Meets MSL level 1, per J-STD-020

## Electrical Parameters

| Parameter | Definition |
| :---: | :---: |
| $\mathrm{V}_{\text {DRM }}$ | Peak Off-state Voltage - maximum voltage that can be applied while maintaining off state |
| $\mathrm{v}_{\mathrm{s}}$ | Switching Voltage - typical voltage prior to switching to on state |
| $\mathrm{V}_{\text {T }}$ | On-state Voltage - maximum voltage measured at rated on-state current |
| IDRM | Leakage Current - maximum peak off-state current measured at $\mathrm{V}_{\text {DRM }}$ |
| Is | Switching Current - maximum current required to switch to on state |
| $\mathrm{I}_{\text {T }}$ | On-state Current - maximum rated continuous on-state current |
| $\mathrm{I}_{\mathrm{H}}$ | Holding Current - minimum current required to maintain on state |
| Co | Off-state Capacitance - typical capacitance measured in off state |
| IPP | Peak Pulse Current - maximum rated peak impulse current |

P0060CA

| Part <br> Number | V ${ }_{\text {DRM }}$ <br> (V) | $\begin{aligned} & V_{S} \\ & (\mathrm{~V}) \end{aligned}$ | $\begin{aligned} & V_{\mathrm{T}} \\ & (\mathrm{~V}) \end{aligned}$ | $\begin{aligned} & I_{D R M} \\ & (\mu \mathrm{~A}) \end{aligned}$ | $\begin{gathered} I_{S} \\ (\mathrm{~mA}) \end{gathered}$ | $\begin{gathered} \mathrm{I}_{\mathrm{T}} \\ (\mathrm{~A}) \end{gathered}$ | $\begin{gathered} \mathrm{I}_{\mathrm{H}} \\ (\mathrm{~mA}) \end{gathered}$ | $\begin{gathered} \mathrm{C}_{\mathrm{O}} \\ (\mathrm{pF}) \end{gathered}$ | $\begin{gathered} \mathrm{I}_{\mathrm{PP}} \\ 10 \times 1000 \mu \mathrm{~s} \\ (\mathrm{~A}) \end{gathered}$ | Marking |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P0060CA | 5 | 15 | 4 | 5 | 800 | 1 | 10 | 25 | 80 | 6CA |

Notes: - All measurements are made at an ambient temperature of $25^{\circ} \mathrm{C}$. I Pp applies to $-40^{\circ} \mathrm{C}$ through $+85^{\circ} \mathrm{C}$ temperature range.

- Off-state capacitance $\left(\mathrm{C}_{\circ}\right)$ is measured at 1 MHz with a 2 V bias and is typical value.
- Rating Surge Voltage: 4KV (10/700 $\mu \mathrm{s}$ )


## Thermal Considerations

| Package DO-214AC/SMA | Symbol | Parameter | Value | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{T}_{J}$ | Operating Junction Temperature | -40 to +125 | ${ }^{\circ} \mathrm{C}$ |
|  | $\mathrm{T}_{S}$ | Storage Temperature Range | -40 to +125 | ${ }^{\circ} \mathrm{C}$ |
|  | $\mathrm{R}_{\text {日JA }}$ | Junction to Ambient on printed circuit | 90 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

## Characteristics Curves

Figure 1. V-I Characteristics


Figure 3. Normalized Vs Change versus Junction Temperature


Figure 2. tr $\times$ td Pulse Wave-form


Figure 4. Normalized DC Holding Current versus Case Temperature


## Recommended Soldering Conditions



## Recommended Conditions

| Profile Feature | Pb-Free Assembly |
| :---: | :---: |
| Average ramp-up rate ( $T_{L}$ to $T_{P}$ ) | $3^{\circ} \mathrm{C} /$ second max. |
| Preheat <br> -Temperature Min ( $\mathrm{T}_{\mathrm{s} \text { min }}$ ) <br> -Temperature Max ( $\mathrm{T}_{\mathrm{s} \text { max }}$ ) <br> -Time (min to max) ( $\mathrm{t}_{\mathrm{s}}$ ) | $\begin{gathered} 150^{\circ} \mathrm{C} \\ 200^{\circ} \mathrm{C} \\ 60-180 \text { seconds } \end{gathered}$ |
| $\mathrm{T}_{\mathrm{S} \text { max }}$ to $\mathrm{T}_{\mathrm{L}}$ -Ramp-up Rate | $3^{\circ} \mathrm{C} /$ second max. |
| Time maintained above: <br> -Temperature ( $\mathrm{T}_{\mathrm{L}}$ ) <br> -Time ( $\mathrm{t}_{\mathrm{L}}$ ) | $\begin{gathered} 217^{\circ} \mathrm{C} \\ 60-150 \text { seconds } \end{gathered}$ |
| Peak Temperature ( $\mathrm{T}_{\mathrm{P}}$ ) | $260^{\circ} \mathrm{C}$ |
| Time within $5^{\circ} \mathrm{C}$ of actual Peak Temperature ( $\mathrm{t}_{\mathrm{P}}$ ) | 20-40 seconds |
| Ramp-down Rate | $6^{\circ} \mathrm{C} /$ second max. |
| Time $25^{\circ} \mathrm{C}$ to Peak Temperature | 8 minutes max. |



Packaging

| Tape | Symbol | Dimension (mm) |
| :---: | :---: | :---: |
|  | W | $12.00 \pm 0.20$ |
|  | P0 | $4.00 \pm 0.10$ |
|  | P1 | $4.00 \pm 0.10$ |
|  | P2 | $2.00 \pm 0.10$ |
|  | D0 | Ф1.50 $\pm 0.10$ |
| 444 ¢ 4 ¢ 4 ¢ 4 | D1 | Ф1.50 $\pm 0.10$ |
| A A <br> D1 $\rightarrow \mid \mathrm{KO}$ | E | $1.50 \pm 0.10$ |
| . | F | $5.65 \pm 0.05$ |
|  | A0 | $2.79 \pm 0.15$ |
| SECTION A-A | B0 | $5.33 \pm 0.15$ |
|  | K0 | $2.55 \pm 0.10$ |
|  | T | $0.25 \pm 0.05$ |
| Reel | D2 | Ф330.0 $\pm 2.0$ |
|  | D3 | $\Phi 13.5 \pm 0.5$ |
|  | H | $2.5 \pm 0.5$ |
|  | W1 | $16.0 \pm 1.0$ |
| R | uantity: 5 |  |

