

CWT1000[®] Datasheet

Qi Compliant 10W Wireless Power Transmitter IC

General Description

CWT1000 can deliver up to 10W as a highly-integrated single-chip wireless medium power transmitter IC. It can be configured to receive its input power from USB or AC adapter. Our chip integrates a power amp driver and communication controllers which use Amplitude Shift Keying (ASK) and Frequency Shift Keying (FSK). Our chip includes a 32-bit ARM Cortex M0 processor in order to offer high level of programmability according to its applications. Communication and control units (CCU) can accommodate WPC protocol including fault condition handling associated with power transfer. The CCU supports the foreign object detection (FOD) extension. Also, the chip includes over-temperature and voltage protection.

Features Overview

- WPC-1.2.4 compliant for A11 low power specification
- High-efficiency power transfer system supporting baseline power profile (<5W) and extended power profile (<10W)
 - Overall system efficiency up to 90%
- Input operating voltage of 4.5V to 9.5V, supporting USB and AC adapter
- Integrated pre-amplify drivers for external power amp
- Integrated 32-bit ARM Cortex M0 processor
 - SRAM for program memory and data memory
- Bi-directional channel communication
 - FSK modulation for PTx to PRx
 - ASK demodulation for PRx to PTx
- 12-bit ADC for voltage/current measurement

- I2C programmable interface
- Foreign object detection
- Current sensing
- Over voltage protection
- Over current limit
- Over-temperature protection
- Optional external power amp configuration
- 128-bit One-Time-Programmable Device
- Low standby power

Applications

- Wireless charging pads
- Wireless power solutions for Mobile
 Applications

Information furnished by CELFRAS is believed to be accurate and reliable. However, no responsibility is assumed by CELFRAS for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of CELFRAS.

1. Description for Implementation

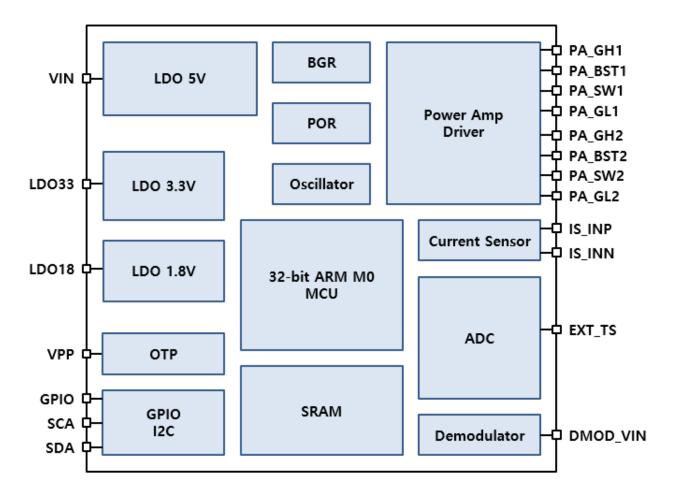


Figure 1. CWT1000 Block Diagram

1.1 Overview

A wireless power charging system is composed of transmitter and receiver. In general, wireless power transmitter will transfer AC power using a power amplifier through a TX inductor coil. Then wireless power receiver will receive AC power through an RX inductor coil which is strongly coupled with the TX coil. In transmitter part, power amplifier (PA) will change the DC power to AC power and transfer the AC power to the TX coil.

Figure1 shows the block diagram of CWT1000 wireless charging transmitter IC. CWT1000 transmitter will support power transfer up to 10W and it is compliant with WPC 1.2.4 standard. It consists of power amp driver, internal LDOs, ADC, 32-bit ARM M0 MCU, SRAM and etc.

1.2 Power Amp Driver

The power amplifier of CWT1000 consists of four external power NLDMOSs and internal driver circuits. The power amp driver also includes boosting circuits for driving external high side NLDMOS. Each gate control signal can be adjusted by internal control and MCU.

The power amplifier of CWT1000 converts input DC power to AC power and transfers it directly to the TX coil. Since power amplifier directly influences the overall transmitter efficiency, the gate control of power MOSFET switches is very important. The power amp driver of CWT1000 changes its switching frequency and duty cycle according to the load current and feedback from the receiver.

1.3 FSK Modulator

The Qi extended power profile (EPP) uses two-way communication for power transfer. In the Qi standard, TX to RX communication is accomplished by frequency shift keying (FSK) modulation over the power signal frequency.

CWQ1000 power transmitter uses FSK modulation for transmitting protocol data to the power receiver. CWQ1000 changes the period of the power transfer signal by counting the internal 60MHz oscillator. The frequency deviation between the base operating frequency f_{OP} and the modulation frequency f_{MOD} is designed according to the Qi EPP standard.

1.4 ASK Demodulator

In the Qi standard, RX to TX communication is accomplished by amplitude shift keying (ASK) modulation with a bit rate of 2Kbps. CWT1000 power transmitter uses an external peak detection circuit and an internal comparator circuit for ASK demodulation. The external peak detection circuit include diode and filtering capacitors and resistors. The ASK demodulator in CWT1000 demodulates the WPC standard 2kHz bi-phase signal from the power receiver.

1.5 ADC

CWT1000 power transmitter employs 12-bit SAR ADC because it has low power, small area characteristics and moderate speed performance. ADC monitors important internal voltages and currents and gives the system information to the digital controller.

1.6 Protection

CWT1000 power transmitter employs various protection schemes in order to prevent system damage. When the external power amplifier current is too large, the OCL (Over Current Limit) function will limit the output current. When the temperature inside or outside the chip is too high, the OTP (Over Temperature Protection) function will shut down the transmitter system to prevent damage resulting from excessive thermal stress under fault conditions.

1.7 Digital Controller

Digital controller of CWT1000 is composed of a 32-bit ARM Cortex M0 processor, OTP, SRAM for program and data memory, etc. Digital controller controls all the analog blocks and entire system to perform power transfer operation according to the wireless power transfer Qi standard. CWT1000 supports the eight GPIO pins and two of them can be dedicated to I2C interface for communication with external host.

2. Pin-out and description

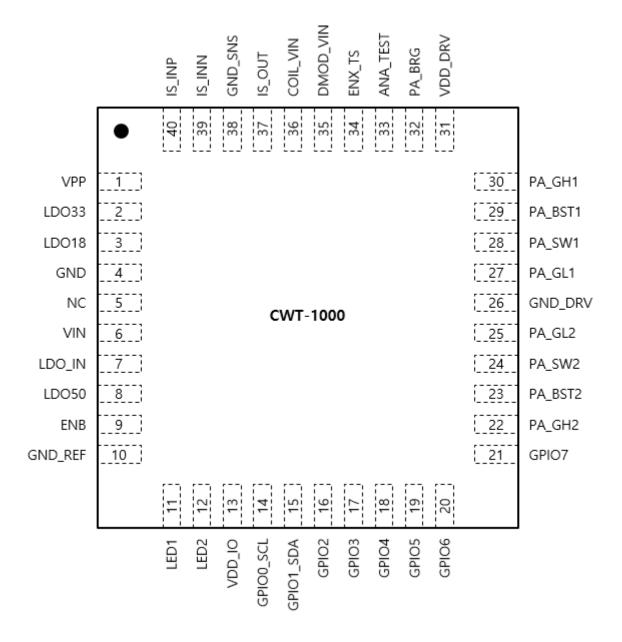


Figure 2. CWT1000 Pin Configuration (QFN 40-pin 5mm x 5mm, 0.4mm pitch)

2.1 Pin Description

Pin Number	Name	Туре	Description	
1VPPI8V high voltage power for OTP programming. During the normal operation, connect this pin to LDO33.		8V high voltage power for OTP programming. During the normal operation, connect this pin to LDO33.		
2	LDO33	0	Internal 3.3V LDO output pin for capacitor connection.	
3	LDO18	0	Internal 1.8V LDO output pin for capacitor connection.	

Qi Compliant 10W Wireless Power Transmitter IC

4	GND		Ground	
5	NC		Not Connected	
6	VIN	I	DC power input for power transmission.	
7	LDO_IN	I	input power supply for internal LDOs.	
8	LDO50	0	Internal 5V LDO output pin for capacitor connection.	
9	ENB	I	Active-low enable pin for the entire chip.	
10	GND_REF		Ground for internal reference block.	
11	LED1	0	Open drain output for LED connection	
12	LED2	0	Open drain output for LED connection	
13	VDD_IO	I	Input power supply for GPIO0~7. The operating range of this pin is 1.8~5.0V.	
14	GPIO0_SCL	1/0	General purpose input/output 0. This pin can be dedicated for I ² C clock input for internal register access.	
15	GPIO1_SDA	1/0	General purpose input/output 1. This pin can be dedicated for I ² C data input/output for internal register access.	
16,17,18 19,20,21	GPIO [2:7]	1/0	General purpose input/output [2:7].	
22	PA_GH2	0	PA gate driver output for the high side FET of half bridge 2.	
23	PA_BST2	I	PA bootstrap capacitor connection pin for driving the high-side FET of half bridge 2.	
24	PA_SW2	I	PA switching node for half bridge 2.	
25	PA_GL2	0	PA gate driver output for the low side FET of half bridge 2.	
26	GND_DRV		Ground for PA driver.	
27	PA_GL1	0	PA gate driver output for the low side FET of half bridge 1.	
28	PA_SW1	I	PA switching node for half bridge 1.	
29	PA_BST1	I	PA bootstrap capacitor connection pin for driving the high-side FET of half bridge 1.	
30	PA_GH1	0	PA gate driver output for the high side FET of half bridge 1.	
31	VDD_DRV	I	Input power supply for the PA drivers.	
32	PA_BRG	I	PA bridge voltage sensing pin.	
33	ANA_TEST	0	Analog test output pin.	
34	EXT_TS	Ι	External temperature sensor input. Connect this pin to external NTC thermistor. If not used, connect this pin to LDO33.	
35	DMOD_VIN	I	Voltage sensing input pin for ASK demodulation.	
36	COIL_VIN	I	Q factor Measurement	
37	IS_OUT	0	Input current sensor output.	
38	GND_SNS		Ground for internal sensors.	
39	IS_INN	Ι	Input current sensor negative input.	
40	IS_INP	I	Input current sensor positive input.	

3. Application Guide

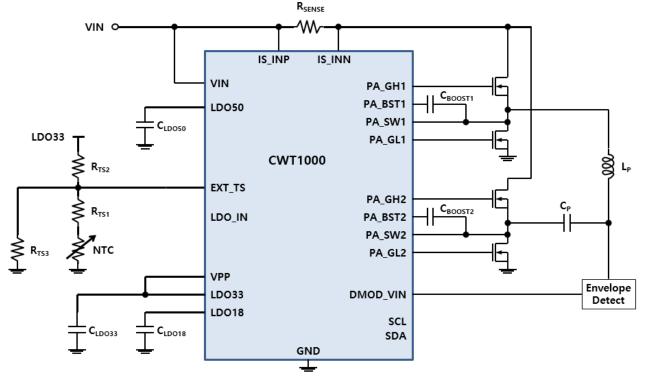


Figure 3. CWT1000 Typical Application Diagram

3.1 Transmitter Coil and Resonant Capacitors

The transmitter coil design is related to the overall system application. The coil inductance, shape and material can be chosen according to its applications. However, it must comply with the WPC recommendations which include the self-inductance value, DC resistance, Q factor, etc. The resonant circuits of the power transmitter consist of an inductance L_P , a capacitance C_P , and a resistance R_P , where the R_P is the parasitic resistance. With respect to TX coil and capacitor, the resonant frequency f_P and the quality factor Q_P can be calculated by the following equations.

$$f_{\rm P} = \frac{1}{2\pi\sqrt{L_{\rm P}C_{\rm P}}}$$
$$Q_{\rm P} = \frac{2\pi f_{\rm P}L_{\rm P}}{R_{\rm P}}$$

The resonant frequency f_P and the quality factor Q_P must be in the range of WPC recommendation.

3.2 Power MOSFETs and Boost Capacitors

As shown in Figure 3, CWT1000 power transmitter uses four external power MOSFETs for the power amplifier configuration. Since the input voltage range of CWT1000 is 0 to 9.5V, the external power MOSFETs should be high voltage devices. CWT1000 power transmitter uses two high side N-channel MOSFETs to improve efficiency and uses boosting circuits to drive them. The recommended power MOSFETs are 30V N-channel LDMOS.

As explained, two external bootstrap capacitors C_{BOOST1} and C_{BOOST2} are needed to drive the high-side FETs of external power amplifier. Bootstrap capacitors should have voltage rating of more than 25V and their recommended capacitances are 0.1uF.

3.3 Output Regulating Capacitors

As shown in Figure 3, LDO_IN and internal LDOs' output LDO50, LDO33, LDO18 should be connected to external capacitor for voltage regulation. Typical recommended capacitance values are C_{LDO_IN} =10uF, C_{LDO50} =1uF, C_{LDO33} =1uF, C_{LDO18} =1uF, respectively.

3.4 Input Current Sensing Resistor

The CWT1000 power transmitter uses an external resistor for the PA input current path to sense the input current. The sensing resistor tolerance should be less than 1% to meet the WPC FOD specification. Also, the current capacity of the resistor must be large because its maximum current reaches up to 1A.

3.5 External Temperature Sensor

When the temperature inside or outside the chip is too high, the OTP (Over Temperature Protection) function will send the EPT packet to transmitter or shutdown the receiver system. In order to sense the temperature outside chip, connect EXT_TS pin to external NTC (Negative temperature Coefficient) thermistor as shown in Figure 3. The NTC thermistor should be placed close to the heat emission device. The EXT_TS voltage V_{EXT} to be calculated as follows,

 $V_{EXT_{TS}} = V_{LDO33} \times \frac{\frac{(R_{NTC} + R_{TS1}) \times R_{TS3}}{(R_{NTC} + R_{TS1}) + R_{TS3}}}{\frac{(R_{NTC} + R_{TS1}) \times R_{TS3}}{(R_{NTC} + R_{TS1}) + R_{TS3}} + R_{TS2}}$

In this equation, V_{LDO33} is 3.3V from the internal LDO.

CWT1000 compares V_{EXT_TS} with internal reference voltages V_{TS_HOT} and V_{TS_COLD} . If $V_{EXT_TS} < V_{TS_HOT}$, it means external temperature is too high and CWT1000 sends the EPT packet to transmitter. On the other hand, if $V_{EXT_TS} > V_{TS_COLD}$, it means external temperature is too low and CWT1000 also sends the EPT packet to transmitter. Remind that V_{EXT_TS} is negative slope curve vs temperature.

The reference voltages V_{TS_HOT} and V_{TS_COLD} are programmable values by firmware. For example, V_{TS_HOT} and V_{TS_COLD} are programmed as follows,

Internal TS Reference	Threshold Voltage [V]	Hysteresis [mV]
V _{TS_HOT}	0.315	20
V _{TS_COLD}	0.980	80

Recommended NTC resistance range is from hundreds of Ω to hundreds of $k\Omega$ vs temperature. After choosing the appropriate NTC thermistor, you can design R_{TS1}, R_{TS2} and R_{TS3} according to your thermal protection specification. Table 1 shows an EXT_TS thermal protection design example.

Temp [℃]	V _{LDO33} [V]	R _{NTC} [kΩ]	R _{TS1} [kΩ]	R _{TS2} [kΩ]	R _{TS3} [kΩ]	V _{EXT_TS} [V]	Status
-40	3.3	188.5	3.9	47	68	1.550	
-30	3.3	111.3	3.9	47	68	1.429	V _{EXT_TS} > V _{TS_COLD}
-20	3.3	67.8	3.9	47	68	1.278	Send EPT packet
-10	3.3	42.5	3.9	47	68	1.109	

CWT1000

Qi Compliant 10W Wireless Power Transmitter IC

0	3.3	27.3	3.9	47	68	0.938			
10	3.3	18.0	3.9	47	68	0.782			
20	3.3	12.1	3.9	47	68	0.648			
30	3.3	8.31	3.9	47	68	0.541	V _{TS_HOT} < V _{EXT_TS} < V _{TS_COLD}		
40	3.3	5.83	3.9	47	68	0.460	Normal charging operation		
50	3.3	4.16	3.9	47	68	0.399			
60	3.3	3.02	3.9	47	68	0.354	1		
70	3.3	2.23	3.9	47	68	0.321			
80	3.3	1.67	3.9	47	68	0.296			
90	3.3	1.27	3.9	47	68	0.278			
100	3.3	0.98	3.9	47	68	0.265	V _{EXT_TS} < V _{TS_HOT} Send EPT packet		
110	3.3	0.76	3.9	47	68	0.255]		
120	3.3	0.60	3.9	47	68	0.247			

Table 1. EXT_TS Thermal Protection Design Example

In this example, the hot temperature threshold T_{TS_HOT} and the cold temperature threshold T_{TS_COLD} are designed to be 80°C and -10°C respectively. You can change the hot and cold temperature threshold according to your application by changing the related resistors.

3.6 PCB Layout Guide

- Keep the trace resistance as low as possible on large current nets associated with the external power MOSFETs.
- Resonant capacitor C_P needs to be as close to the device as possible.
- Boost capacitors (C_{BOOST1}, C_{BOOST2}) need to be as close to the device as possible.
- Output regulating capacitors C_{LDO_IN}, C_{LDO50}, C_{LDO33} and C_{LDO18} need to be as close to the device as possible.

4. Package Outline

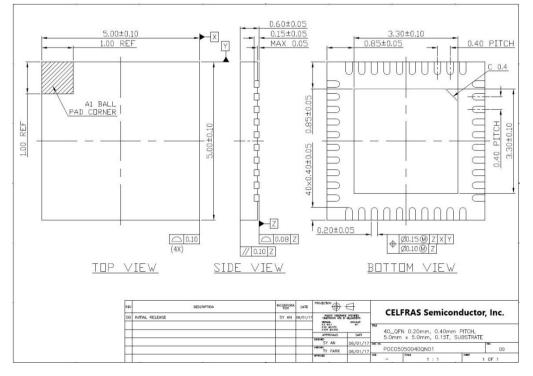


Figure 4. QFN 40-pin Package Outline, 5.0mm x 5.0mm, 0.4mm pitch

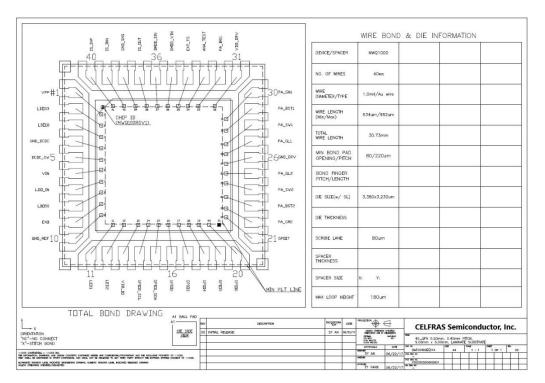


Figure 5. QFN 40-pin Bonding Diagram

5. Electrical Characteristics

5.1 Absolute Maximum Rating

PIN	Parameter	Rating	Unit
ENB, PA_GH2, PA_BST2 PS_SW2, PA_SW1, PA_BST1, PA_GH1, PA_BRG IS_INP, IS_INN	Voltage	-0.3 to 26	v
VIN	Voltage	-0.3 to 10	V
VPP	Voltage	-0.3 to 8	V
LDO33, LDO_IN, LDO50, LED1, LED2 VDD_IO, GPIO0_SCL, GPIO1_SDA, GPIO2, GPIO3 GPIO4, GPIO5, GPIO6, GPIO7, PA_GL2 PA_GL1, VDD_DRV, ANA_TEST, EXT_TS, DMOD_VIN DMOD_IIN, IS_OUT	Voltage	-0.3 to 6	v
LDO18	Voltage	-0.3 to 2	V
GND, GND_REF, GND_SNS, GND_DRV	Voltage	-0.3 to 0.3	٧

5.2 Recommended Operating Condition

Symbol	Description	Min.	Тур.	Max.	Unit
V _{IN}	DC power input for power transmission.	4.5		9.5	V
TJ	Junction temperature	-30		125	°C
T _A	Ambient temperature	-30		85	°C

5.3 Device Characteristics

Symbol	Description	Conditions	Min.	Тур.	Max.	Unit	
Input Supply ar	Input Supply and Current Consumption						
V _{IN}	Input supply voltage range			9	9.5	٧	
V _{UVLO}	Under voltage lockout	V_{IN} : 0V to 5V		4.0	4.2	٧	
V _{UVLO_HYS}	Under voltage lockout hysteresis	V_{IN} : 5V to 0V		500		mV	
l _{in}	Input current at power transfer mode	V _{IN} =9V		10		mA	
I _{STD_BY}	Input current at stand-by mode (periodic ping)	V _{IN} =9V		1		mA	
I _{PDN}	Input current at power down mode	ENB=V _{IN} =9V		25		uA	
Power Amplifie	Power Amplifier and Driver						
f _{PA}	Power amplifier switching frequency		85		205	kHz	
T _{LS_SW}	Low side gate driver rising and falling times			50		ns	
T _{HS_SW}	High side gate driver rising and falling times			150		ns	

CWT1000

Qi Compliant 10W Wireless Power Transmitter IC

	w v
	v
	V 1
20	mA
	v
20	mA
	V
10	mA
	-
	v
	kHz
	MHz
	-
	bit
	kSa/
	А
	°C
	°C
	۷
	mV
	V
	mV

6. I²C Signal Timing

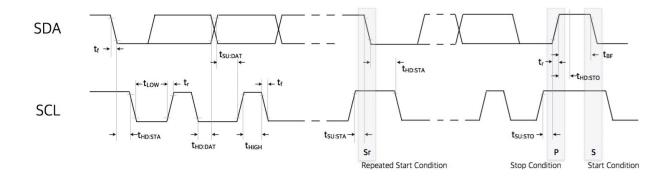


Figure 6. Timing Diagram for I²C interface

Symbol	Description	Conditions	Min.	Тур.	Max.	Unit
V _{IL_SDA}	Input low threshold level SDA	Input low threshold level SDA V _{PULLUP} =VDD_IO=3.3V			0.7	V
V_{IH_SDA}	Input high threshold level SDA	V _{PULLUP} =VDD_IO=3.3V	2.6			V
V _{IL_SCL}	Input low threshold level SCL	V _{PULLUP} =VDD_IO=3.3V			0.7	V
V _{IH_SCL}	Input high threshold level SCL	V _{PULLUP} =VDD_IO=3.3V	2.6			V
f _{SCL}	SCL clock frequency				400	kHz
t _{LOW}	SCL clock low time		1.3			us
t _{HIGH}	SCL clock high time		0.6			us
t _r	Rise time of both SDA and SCL				0.3	us
t _f	Fall time of both SDA and SCL				0.3	us
t _{su,sta}	Setup time for START condition		0.6			us
t _{hd,sta}	Hold time for START condition		0.6			us
t _{su,dat}	Data setup time		0.1			us
t _{hd,dat}	Data hold time				0.9	us
t _{su,sto}	Setup time for STOP condition		0.6			us
t _{BF}	Bus free time between STOP and START condition		1.3			us

Table 2. I²C Characteristics

Revision History

Date	Version No.	Description
2018/03/25	1.0	Initial Release
2018/07/26	1.1	Modify Pin definition

Contact US

> Headquarters

CELFRAS Semiconductor Inc. 江西联智集成电路有限公司

59 Chuangxin No.1 Road, Nanchang Hi-tech Development Zone, Nanchang, Jiangxi, P.R.CHINA, Zip:330000

> International

CELFRAS Design Center Inc.

7F, 225-14, Pangyoyeok-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13494, Korea Tel. +82-70-4055-6466 Fax +82-31-707-8825

Contact

Website http://www.celfras.com/

Technical Support <u>cts@celfras.com</u>, <u>june_yoo@celfras.com</u> Sales Contact marketing@celfras.com

Copyright © 2018 CELFRAS., Inc. All rights reserved. CELFRAS., Inc.