VS-32CTQ025-M3, VS-32CTQ030-M3

Vishay Semiconductors

High Performance Schottky Rectifier, 2 x 15 A

www.vishay.com

PRIMARY CHARACTERISTICS				
I _{F(AV)}	2 x 15 A			
V _R	25 V, 30 V			
V _F at I _F	0.40 V			
I _{RM} max.	97 mA at 125 °C			
T _J max.	150 °C			
E _{AS}	13 mJ			
Package	3L TO-220AB			
Circuit configuration	Common cathode			

FEATURES

- 150 °C T_. operation
- Low forward voltage drop
- High frequency operation

COMPLIANT

- High nequency operation
 High purity, high temperature epoxy FREE encapsulation for enhanced mechanical strength and moisture resistance
- Guard ring for enhanced ruggedness and long term reliability
- Designed and qualified according to JEDEC®-JESD 47
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION

The VS-32CTQ... Schottky rectifier series has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 150 °C junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS					
SYMBOL	CHARACTERISTICS VALUES UN				
I _{F(AV)}	Rectangular waveform	30	А		
V _{RRM}		25/30	V		
I _{FSM}	t _p = 5 μs sine	900	А		
V _F	15 A _{pk} , T _J = 125 °C	0.40	V		
TJ	Range	-55 to +150	°C		

VOLTAGE RATINGS					
PARAMETER	SYMBOL	VS-32CTQ025-M3	VS-32CTQ030-M3	UNITS	
Maximum DC reverse voltage	V _R	25	30	V	
Maximum working peak reverse voltage	V _{RWM}	20	30	v	

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST COND	VALUES	UNITS		
Maximum average forward current, see fig. 5	I _{F(AV)}	50 % duty cycle at T _C = 115 °C	30			
Maximum peak one cycle non-repetitive		5 μs sine or 3 μs rect. pulse	Following any rated load condition and with rated	900	А	
surge current, see fig. 7		10 ms sine or 6 ms rect. pulse	V _{RRM} applied	250		
Non-repetitive avalanche energy	E _{AS}	T _J = 25 °C, I _{AS} = 1.20 A, L = 11.10 mH		13	mJ	
Repetitive avalanche current	I _{AR}	Current decaying linearly to zero in 1 μ s Frequency limited by T _J maximum V _A = 1.5 x V _R typical		3	А	

Revision: 17-Aug-17 1 Document Number: 96278 For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS

PARAMETER	SYMBOL	TEST	VALUES	UNITS	
Maximum forward voltage drop See fig. 1		15 A	T _{.1} = 25 °C	0.49	V
		30 A	1j=25 C	0.58	
	V _{FM} ⁽¹⁾	15 A	T _J = 125 °C	0.40	
		30 A		0.53	
Maximum reverse leakage current	I _{BM} ⁽¹⁾	T _J = 25 °C	$V_{\rm B}$ = Rated V _B	1.75	mA
See fig. 2	'RM \''	T _J = 125 °C	V _R = naleu V _R	97	
Threshold voltage	V _{F(TO)}	T _J = T _J maximum		0.233	V
Forward slope resistance	r _t			9.09	mΩ
Maximum junction capacitance per leg	CT	V_R = 5 V_{DC} (test signal range 100 kHz to 1 MHz) 25 °C		1300	pF
Typical series inductance per leg	L _S	Measured lead to lead 5 mm from package body		8.0	nH
Maximum voltage rate of change	dV/dt	Rated V _B		10 000	V/µs

Note

 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum junction and stora temperature range	age	T _J , T _{Stg}		-55 to 150	°C	
Maximum thermal resistanc junction to case per leg	e,	R _{thJC}	DC operation See fig. 4	3.25	°C/W	
Typical thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth and greased 0		0/11	
Approvimento uscient			2	g		
Approximate weight				0.07	OZ.	
Mounting torque	minimum			6 (5)	kgf ⋅ cm	
Mounting torque	maximum			12 (10)	(lbf ⋅ in)	
			32CT	Q025		
Marking device			Case style 3L TO-220AB	32CT	Q030	

VS-32CTQ025-M3, VS-32CTQ030-M3

Vishay Semiconductors

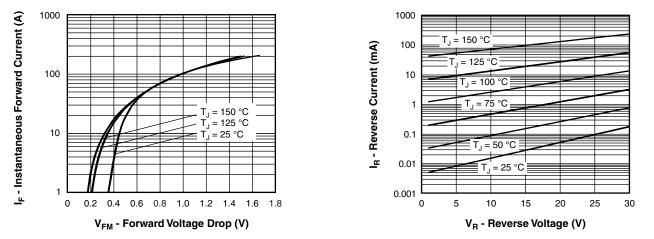
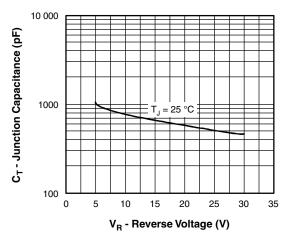
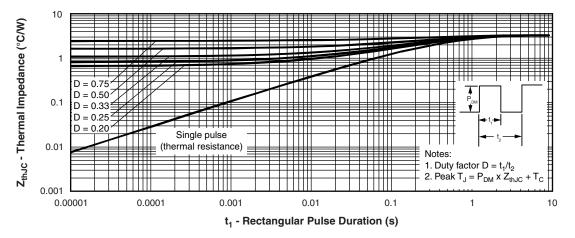


Fig. 1 - Maximum Forward Voltage Drop Characteristics

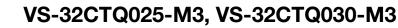
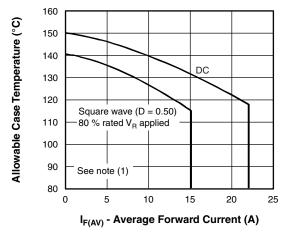
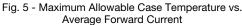
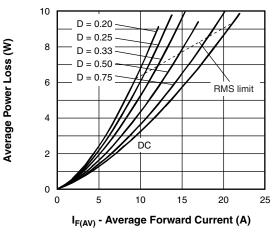
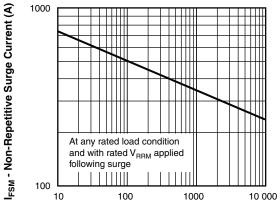


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage




Revision: 17-Aug-17 3 Document Number: 96278 For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>




Vishay Semiconductors

t_p - Square Wave Pulse Duration (μs)

Fig. 7 - Maximum Non-Repetitive Surge Current

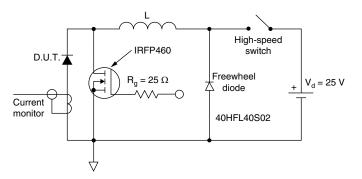
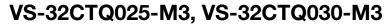


Fig. 8 - Unclamped Inductive Test Circuit


Note

⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $Pd = forward power loss = I_{F(AV)} \times V_{FM} at (I_{F(AV)}/D)$ (see fig. 6); $Pd_{REV} = inverse power loss = V_{R1} \times I_R (1 - D)$; $I_R at V_{R1} = 80 \%$ rated V_R

Revision: 17-Aug-17

4

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code VS-	32 C	т	Q	030	-M3
	2 3	4	5	6	7
1 - 2 - 3 - 4 -	Vishay Sem Current ratir Circuit confi C = common Package: T = TO-220	ng (30 A guration n cathoo)	oduct	
5 - 6 - 7 -	Schottky "Q Voltage ratir Environmen -M3 = halog	ngs — tal digit		[025 = 2 030 = 3

ORDERING INFORMATION (Example)						
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION			
VS-32CTQ025-M3	50	1000	Antistatic plastic tube			
VS-32CTQ030-M3	50	1000	Antistatic plastic tube			

LINKS TO RELATED DOCUMENTS					
Dimensions www.vishay.com/doc?96154					
Part marking information	www.vishay.com/doc?95028				

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.