

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FOD420, FOD4208, FOD4216, FOD4218 6-Pin DIP High dv/dt Random Phase Triac Drivers

Features

- 300 mA On-State Current
- High Blocking Voltage
- 600 V (FOD420, FOD4216)
- 800 V (FOD4208, FOD4218)
- High Trigger Sensitivity
- 1.3 mA (FOD4216, FOD4218)
- 2 mA (FOD420, FOD4208)
- High Static dv/dt ($10,000 \mathrm{~V} / \mu \mathrm{s}$)
- Safety and Regulatory Approvals:
- UL1577, 5,000 VAC RMS for 1 Minute
- DIN-EN/IEC60747-5-5

Applications

- Solid-State Relays
- Industrial Controls
- Lighting Controls
- Static Power Switches
- AC Motor Starters

Description

The FOD420, FOD4208, FOD4216 and FOD4218 devices consist of an infrared emitting diode coupled to a hybrid random phase triac formed with two inverse parallel SCRs which form the triac function capable of driving discrete triacs. The FOD4216 and FOD4218 utilize a high efficiency infrared emitting diode which offers an improved trigger sensitivity. These devices are housed in a standard 6-pin dual in-line (DIP) package.

Functional Schematic

*DO NOT CONNECT (TRIAC SUBSTRATE)

Package Outlines

Figure 2. Package Outlines

Figure 1. Schematic

Safety and Insulation Ratings

As per DIN EN/IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter		Characteristics
Installation Classifications per DIN VDE	$<150 \mathrm{~V}_{\mathrm{RMS}}$	I-IV
$0110 / 1.89$ Table 1, For Rated Mains Voltage	$<300 \mathrm{~V}_{\mathrm{RMS}}$	I-IV
Climatic Classification	$55 / 100 / 21$	
Pollution Degree (DIN VDE 0110/1.89)	2	
Comparative Tracking Index	175	

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Device	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	All	-55 to +150	${ }^{\circ} \mathrm{C}$
T OPR	Operating Temperature	All	-55 to +100	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature	All	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SOL }}$	Lead Solder Temperature	All	260 for 10 sec	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {d(total })}$	Total Device Power Dissipation @ $25^{\circ} \mathrm{C}$	All	500	mW
	Derate Above $25^{\circ} \mathrm{C}$	All	6.6	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
EMITTER				
I_{F}	Continuous Forward Current	All	30	mA
V_{R}	Reverse Voltage	All	6	V
$\mathrm{P}_{\mathrm{D} \text { (Emitter) }}$	Total Power Dissipation $25^{\circ} \mathrm{C}$ Ambient	All	50	mW
	Derate Above $25^{\circ} \mathrm{C}$	All	0.71	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
DETECTOR				
$\mathrm{V}_{\text {DRM }}$	Off-State Output Terminal Voltage	FOD420, FOD4216	600	V
		FOD4208, FOD4218	800	
$\mathrm{I}_{\text {TSM }}$	Peak Non-Repetitive Surge Current (single cycle 60 Hz sine wave)	All	3	A
$\mathrm{I}_{\text {TM }}$	Peak On-State Current	All	300	mA
$\mathrm{P}_{\mathrm{D} \text { (DETECTOR) }}$	Total Power Dissipation @ $25^{\circ} \mathrm{C}$ Ambient	All	450	mW
	Derate Above $25^{\circ} \mathrm{C}$	All	5.9	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$

Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.
Individual Component Characteristics

Symbol	Parameter	Test Conditions		Device	Min.	Typ.	Max.	Unit
EMITTER								
V_{F}	Input Forward Voltage	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$		All		1.28	1.50	V
I_{R}	Reverse Leakage Current	$\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$		All		0.01	10	$\mu \mathrm{A}$
DETECTOR								
$\mathrm{I}_{\mathrm{D} \text { (RMS) }}$	Peak Blocking Current, Either Direction	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0, \\ & \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}^{(2)} \end{aligned}$	$\mathrm{V}_{\mathrm{D}}=600 \mathrm{~V}$	$\begin{aligned} & \text { FOD420, } \\ & \text { FOD4216 } \end{aligned}$		3	100	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{D}}=800 \mathrm{~V}$	$\begin{aligned} & \text { FOD4208, } \\ & \text { FOD4218 } \end{aligned}$				
$\mathrm{I}_{\mathrm{R} \text { (RMS) }}$	Reverse Current	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{D}}=600 \mathrm{~V}$	$\begin{aligned} & \text { FOD420, } \\ & \text { FOD4216 } \end{aligned}$		3	100	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{D}}=800 \mathrm{~V}$	$\begin{aligned} & \hline \text { FOD4208, } \\ & \text { FOD4218 } \end{aligned}$				
dv/dt	Critical Rate of Rise of Off-State Voltage	$I_{F}=0 A^{(3)}$ (Figure 14)	$V_{D}=V_{\text {DRM }}$	All	10,000			V/us

Notes:

2. Test voltage must be applied within dv/dt rating.
3. This is static $d v / d t$. See Figure 14 for test circuit. Commutating $d v / d t$ is a function of the load-driving thyristor(s) only.

Electrical Characteristics (Continued)
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.
Transfer Characteristics

Symbol	Parameter	Test Conditions		Device	Min.	Typ.	Max.	Unit
$\mathrm{I}_{\text {FT }}$	LED Trigger Current	Main Terminal Voltage $=5 \mathrm{~V}^{(4)}$		$\begin{aligned} & \text { FOD420, } \\ & \text { FOD4208 } \end{aligned}$		0.75	2.0	mA
				$\begin{aligned} & \hline \text { FOD4216, } \\ & \text { FOD4218 } \end{aligned}$		0.75	1.3	
$V_{\text {TM }}$	Peak On-State Voltage, Either Direction	$\mathrm{I}_{T M}=300 \mathrm{~mA}$ peak, $\mathrm{I}_{\mathrm{F}}=$ Rated I_{FT}		All		2.2	3	V
I_{H}	Holding Current, Either Direction	$\mathrm{V}_{\mathrm{T}}=3 \mathrm{~V}$		All		200	500	$\mu \mathrm{A}$
I	Latching Current	$\mathrm{V}_{\mathrm{T}}=2.2 \mathrm{~V}$		All		5		mA
t_{ON}	Turn-On Time	$\begin{aligned} & \mathrm{PF}=1.0, \\ & \mathrm{I}_{\mathrm{T}}=300 \mathrm{~mA} \end{aligned}$	$V_{\text {RM }}=\mathrm{V}_{\mathrm{DM}}=424 \mathrm{VAC}$	$\begin{aligned} & \text { FOD420, } \\ & \text { FOD4216, } \\ & \text { FOD4218 } \end{aligned}$		60		$\mu \mathrm{s}$
			$\mathrm{V}_{\mathrm{RM}}=\mathrm{V}_{\mathrm{DM}}=565 \mathrm{VAC}$	FOD4208				
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time		$V_{\text {RM }}=\mathrm{V}_{\mathrm{DM}}=424 \mathrm{VAC}$	$\begin{aligned} & \text { FOD420, } \\ & \text { FOD4216, } \\ & \text { FOD4218 } \end{aligned}$		52		$\mu \mathrm{s}$
			$\mathrm{V}_{\mathrm{RM}}=\mathrm{V}_{\mathrm{DM}}=565 \mathrm{VAC}$	FOD4208				
$\mathrm{dv} / \mathrm{dt} \mathrm{C}_{\mathrm{C}}$	Critical Rate of Rise of Voltage at Current Commutation	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=230 \mathrm{~V}_{\mathrm{RMS}}, \\ & \mathrm{I}_{\mathrm{D}}=300 \mathrm{~mA}_{\mathrm{PK}} \end{aligned}$		All		10		V/us
di/dt ${ }_{C}$	Critical Rate of Rise of On-State Current Commutation	$\begin{aligned} & V_{D}=230 \mathrm{~V}_{\mathrm{RMS}}, \\ & \mathrm{I}_{\mathrm{D}}=300 \mathrm{~mA}_{P K} \end{aligned}$		All		9		A/ms
$\mathrm{dv}\left({ }_{(1)}\right) / \mathrm{dt}$	Critical Rate of Rise of Coupled Input/Output Voltage	$\mathrm{I}_{\mathrm{T}}=0 \mathrm{~A}, \mathrm{~V}_{\mathrm{RM}}=\mathrm{V}_{\mathrm{DM}}=424 \mathrm{VAC}$		All	10,000			V/ $/ \mathrm{s}$

Note:

4. All devices are guaranteed to trigger at an I_{F} value less than or equal to max I_{FT}. Therefore, recommended operating I_{F} lies between max $I_{F T}(2 \mathrm{~mA}$ for FOD420 and FOD4208 and 1.3 mA for FOD4216 and FOD4218) and the absolute $\max I_{F}(30 \mathrm{~mA})$.

Isolation Characteristics

Symbol	Parameter	Test Conditions	Device	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {ISO }}$	Steady State Isolation Voltage	$\mathrm{f}=60 \mathrm{~Hz}, \mathrm{t}=1$ Minute $^{(5)}$	All	5,000			VAC $_{\text {RMS }}$

Note:

5. Isolation voltage, $\mathrm{V}_{\text {ISO }}$, is an internal device dielectric breakdown rating. For this test, pins 1,2 and 3 are common, and pins 4,5 and 6 are common. $5,000 \mathrm{VAC}_{\text {RMS }}$ for 1 minute duration is equivalent to $6,000 \mathrm{VAC}_{\mathrm{RMS}}$ for 1 second duration.

Typical Application

Figure 3 shows a typical circuit for when hot line switch-ing is required. In this circuit the "hot" side of the line is switched and the load connected to the cold or neutral side. The load may be connected to either the neutral or hot line.
Rin is calculated so that IF is equal to the rated IFT of the part, 2 mA for FOD420 and FOD4208, 1.3 mA for FOD4216 and FOD4218. The 39Ω resistor and $0.01 \mu \mathrm{~F}$ capacitor are for snubbing of the triac and may or may not be necessary depending upon the particular triac and load use.

* For highly inductive loads (power factor < 0.5), change this value to 360 ohms.

Figure 3. Hot-Line Switching Application Circuit

Figure 4. Inverse-Parallel SCR Driver Circuit

Suggested method of firing two, back-to-back SCR's with a Fairchild triac driver. Diodes can be 1N4001; resistors, R1 and R2, are optional 330Ω.

Note: This optoisolator should not be used to drive a load directly. It is intended to be a discrete triac driver device only.

Typical Performance Characteristics

Figure 5. Forward Voltage $\left(\mathrm{V}_{\mathrm{F}}\right)$ vs. Forward Current $\left(\mathrm{I}_{\mathrm{F}}\right)$

Figure 7. Peak LED Current
vs. Duty Factor, Tau

Figure 9. Pulse Trigger Current

Figure 6. Normalized LED Trigger Current (I_{FT}) vs. Ambient Temperature (T_{A})

Figure 8. Trigger Delay Time

Figure 10. On-State Voltage (V_{TM}) vs. On-State Current (I_{TM})

Typical Performance Characteristics (Continued)

Figure 11. Normalized Holding Current $\left(\mathrm{I}_{\mathrm{H}}\right)$ vs. Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$

Figure 12. Normalized Off-State Current (IDRM) vs. Ambient Temperature (T_{A})

Figure 13. Current Reduction

Figure 14. Circuit for Static $\frac{d v}{d t}$ Measurement of Power Thyristors

Ordering Information

Part Number	Package	Packing Method
FOD420	DIP 6-Pin	Tube (50 Units)
FOD420S	SMT 6-Pin (Lead Bend)	Tube (50 Units)
FOD420SD	SMT 6-Pin (Lead Bend)	Tape and Reel (1000 Units)
FOD420V	DIP 6-Pin, DIN EN/IEC60747-5-5 Option	Tube (50 Units)
FOD420SV	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	Tube (50 Units)
FOD420SDV	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	Tape and Reel (1000 Units)
FOD420TV	DIP 6-Pin, 0.4" Lead Spacing, DIN EN/IEC60747-5-5 Option	Tube (50 Units)

Note:

6. The product orderable part number system listed in this table also applies to the FOD4208, FOD4216, and FOD4218product families.

Marking Information

Figure 16. Top Mark

Table 1. Top Mark Definitions

1	Fairchild Logo
2	Device Number
3	VDE mark. DIN EN/IEC60747-5-5 Option (only appears on component ordered with this option)
4	One-Digit Year Code, e.g., "6"
5	Digit Work Week, Ranging from "01" to "53"
6	Assembly Package Code

NOTES:
A) NO STANDARD APPLIES TO THIS PACKAGE.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION
D) DRAWING FILENAME AND REVSION: MKT-N06Grev2.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

