

Buy

TS3A24157

SCDS208B-JUNE 2007-REVISED OCTOBER 2016

TS3A24157 0.65-Ω 2-Channel SPDT Analog Switch 2-Channel 2:1 Multiplexer and Demultiplexer

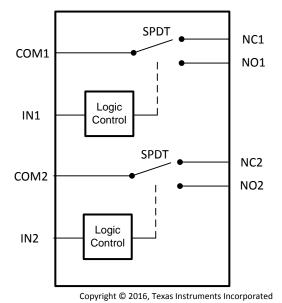
Features 1

- Specified Break-Before-Make Switching
- Low ON-State Resistance (0.65-Ω Maximum)
- Low Charge Injection
- **Excellent ON-State Resistance Matching**
- Low Total Harmonic Distortion
- 1.65-V to 3.6-V Single-Supply Operation
- **Bidirectional Signal Paths**
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

Applications 2

- **Cell Phones**
- **PDAs**
- Portable Instrumentation
- Audio and Video Signal Routing
- Low-Voltage Data Acquisition Systems
- **Communication Circuits**
- Modems
- Hard Drives
- **Computer Peripherals**
- Wireless Terminals and Peripherals

3 Description


The TS3A24157 is a bidirectional, 2-channel, singlepole double-throw (SPDT) analog switch that is designed to operate from 1.65 V to 3.6 V. The device offers low ON-state resistance and excellent ON-state resistance matching with the break-before-make feature, to prevent signal distortion during the transfer of a signal from one channel to another. The device has excellent total harmonic distortion (THD) performance and consumes very-low power. These features make this device suitable for portable audio applications.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TS3A24157	UQFN (10)	1.50 mm × 2.00 mm
	VSSOP (10)	3.00 mm × 3.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Functional Block Diagram

Table of Contents

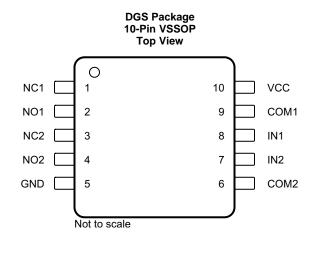
1	Feat	tures 1
2	Арр	lications1
3	Des	cription1
4	Rev	ision History
5	Pin	Configuration and Functions
6	Spe	cifications 4
	6.1	Absolute Maximum Ratings 4
	6.2	ESD Ratings 4
	6.3	Recommended Operating Conditions 4
	6.4	Thermal Information 4
	6.5	Electrical Characteristics: 3-V Supply 5
	6.6	Electrical Characteristics: 2.5-V Supply 6
	6.7	Electrical Characteristics: 1.8-V Supply7
	6.8	Typical Characteristics 8
7	Para	ameter Measurement Information 10
8	Deta	ailed Description 14
	8.1	Overview 14
	8.2	Functional Block Diagram 14

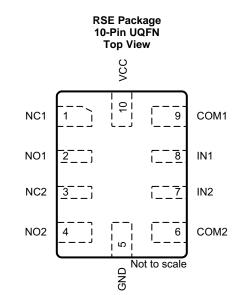
	8.3	Feature Description 14					
	8.4	Device Functional Modes 14					
9	Арр	lication and Implementation 15					
	9.1	Application Information 15					
	9.2	Typical Application 15					
10	Pow	ver Supply Recommendations 16					
11	11 Layout						
	11.1	Layout Guidelines 16					
	11.2	Layout Example 16					
12	Dev	ice and Documentation Support 17					
	12.1	Device Support 17					
	12.2	Documentation Support 18					
	12.3	Receiving Notification of Documentation Updates 18					
	12.4	Community Resources 18					
	12.5	Trademarks 18					
	12.6	Electrostatic Discharge Caution 18					
	12.7	Glossary 18					
13	Mec	hanical, Packaging, and Orderable					
	Info	mation 19					

4 Revision History

2

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Cł	nanges from Revision A (September 2007) to Revision B	Page
•	Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section.	
•	Deleted Ordering Information table; see POA at the end of the data sheet	1
•	Deleted Summary of Characteristics table	1
•	Changed V ₊ pin name to VCC	3
•	Added Thermal Information table	4


XAS STRUMENTS

www.ti.com

5 Pin Configuration and Functions

Pin Functions

PIN		I/O	DESCRIPTION			
NO.	NAME	1/0	DESCRIPTION			
1	NC1	I/O	Normally closed signal path			
2	NO1	I/O	ally open signal path			
3	NC2	I/O	Normally closed signal path			
4	NO2	I/O	Normally open signal path			
5	GND	_	Ground			
6	COM2	I/O	Common signal path			
7	IN2	I	Digital control to connect COM2 to NO2 or NC2			
8	IN1	I	Digital control to connect COM1 to NO1 or NC1			
9	COM1	I/O	Common signal path			
10	VCC	_	ower supply			

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾⁽³⁾

		MIN	MAX	UNIT
Supply voltage		-0.5	3.6	V
Analog signal voltage ⁽⁴⁾		-0.5	V _{CC} + 0.5	V
Digital input voltage		-0.5	3.6	V
Analog port diode current	$V_{\rm NC}, V_{\rm NO}, V_{\rm COM} < 0$	-50	50	mA
ON-state switch current	V_{NC} , V_{NO} , $V_{COM} = 0$ to V_{CC}	-300	300	mA
ON-state peak switch current ⁽⁵⁾	V_{NC} , V_{NO} , $V_{COM} = 0$ to V_{CC}	-500	500	mA
Digital input clamp current	V _{IN} < 0	-50		mA
Continuous current through VCC			100	mA
Continuous current through GND		-100		mA
Storage temperature, T _{stg}		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages are with respect to ground, unless otherwise specified.

(3) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

(4) This value is limited to 5.5 V (maximum).

(5) Pulse at 1-ms duration < 10% duty cycle.

6.2 ESD Ratings

			VALUE	UNIT
V	Electroptotic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾		V
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

				MIN	MAX	UNIT
V _{CC}	Supply voltage	upply voltage		1.65	3.6	V
V _{NC}		NC1, NC2		0	V _{CC}	
V _{NO}	Analog signal voltage	NO1, NO2		0	V_{CC}	V
V _{COM}		COM1, COM2		0	V _{CC}	
V _{IN}	Digital input voltage			0	V _{CC}	V

6.4 Thermal Information

		10 PINS 10 PINS al resistance 188.5 160.3 °C/W rmal resistance 76.5 77.8 °C/W resistance 108.2 82.2 °C/W		
	Πο PINS R _{θJA} Junction-to-ambient thermal resistance 188.5			
		10 PINS	10 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	188.5	160.3	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	76.5	77.8	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	108.2	82.2	°C/W
ΨJT	Junction-to-top characterization parameter	15.3	4.3	°C/W
ΨЈВ	Junction-to-board characterization parameter	106.8	82.2	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics: 3-V Supply

 $V_{CC} = 3 \text{ V}, T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

	PARAMETER	TES	T CONDITIONS		MIN	TYP	MAX	UNIT
ANALOG S	SWITCH							
		$0 \le (V_{NC} \text{ or } V_{NO}) \le V_{CC}, V_{CC} = 2$	2.7 V.	$T_A = 25^{\circ}C$		0.5	0.65	
r _{PEAK}	Peak ON resistance	$I_{COM} = -100 \text{ mA}$, Switch ON, S		$-40^{\circ}C \le T_A \le 85^{\circ}C$			0.75	Ω
		V_{NC} or V_{NO} = 2 V, V_{CC} = 2.7 V,		$T_A = 25^{\circ}C$		0.45	0.6	
r _{ON}	ON-state resistance	$I_{COM} = -100 \text{ mA}$, Switch ON, S	ee Figure 10	-40°C ≤ T _A ≤ 85°C			0.65	Ω
	ON-state resistance match	V_{NC} or V_{NO} = 2 V or 0.8 V, V_{CC}	= 2 7 V	$T_A = 25^{\circ}C$		0.05	0.07	
Δr_{ON}	between channels	$I_{COM} = -100 \text{ mA}$, Switch ON, S		–40°C ≤ T _A ≤ 85°C			0.08	Ω
			$0 \le (V_{NC} \text{ or } V_{NO}) \le V_{NO}$	/ _{cc}		0.025		
ron(FLAT)	ON-state resistance flatness	$V_{CC} = 2.7 \text{ V}, I_{COM} = -100 \text{ mA},$ Switch ON, See Figure 10	V _{NC} or V _{NO} =	$T_A = 25^{\circ}C$		0.01	0.04	Ω
011(1211)		Switch ON, See Figure 10	2 V or 0.8 V	$-40^{\circ}C \le T_A \le 85^{\circ}C$			0.1	
		V_{NC} or V_{NO} = 1 V and V_{COM} = 3	3 V, or	T _A = 25°C	-50		50	
I _{NC(OFF)} , I _{NO(OFF)}	NC and NO OFF leakage current	V_{NC} or V_{NO} = 3 V and V_{COM} = 1 V_{CC} = 3.6 V, Switch OFF, See	V;	$-40^{\circ}C \le T_A \le 85^{\circ}C$	-250		250	nA
I _{NC(ON)} ,		V_{NC} or V_{NO} = 1 V or 3 V, V_{COM}	= Open.	T _A = 25°C	-50		50	
I _{NO(ON)}	NC and NO ON leakage current	$V_{CC} = 3.6 \text{ V}$, Switch ON, See F		$-40^{\circ}C \le T_A \le 85^{\circ}C$	-400		400	nA
		V _{NC} or V _{NO} = Open, V _{COM} = 1 V	/or3V	$T_A = 25^{\circ}C$	-50		50	
I _{COM(ON)}	COM ON leakage current	$V_{CC} = 3.6 \text{ V}$, Switch ON, See F		$-40^{\circ}C \le T_A \le 85^{\circ}C$	-400		400	nA
DIGITAL C	CONTROL INPUTS (IN1, IN2) ⁽¹⁾							
VIH	Input logic high	2.7 V ≤ V _{CC} ≤ 3.6 V, –40°C ≤ T	$2.7 \text{ V} \le \text{V}_{CC} \le 3.6 \text{ V}, -40^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85^{\circ}\text{C}$					V
V _{IL}	Input logic low	2.7 V ≤ V _{CC} ≤ 3.6 V, –40°C ≤ T					0.5	V
				$T_A = 25^{\circ}C$	-50	5	50	
I _{IH} , I _{IL}	Input leakage current	$V_{IN} = 3.6 \text{ V or GND}, V_{CC} = 3.6$	V −40°C ≤ T _A ≤ 85°C		-150		150	nA
DYNAMIC		L						
		$V_{COM} = V_{CC}, R_{L} = 50 \Omega,$	V _{CC} = 3 V, T _A = 25°C			20	35	
t _{ON}	Turnon time	$C_L = 35 \text{ pF}$, See Figure 14	$2.7 \text{ V} \le \text{V}_{\text{CC}} \le 3.6 \text{ V}$, –40°C ≤ T _A ≤ 85°C			40	ns
		$V_{COM} = V_{CC}, R_{L} = 50 \Omega,$	V _{CC} = 3 V, T _A = 25°	С		12	25	
t _{OFF}	Turnoff time	$C_L = 35 \text{ pF}$, See Figure 14	$2.7 \text{ V} \le \text{V}_{\text{CC}} \le 3.6 \text{ V}$, –40°C ≤ T _A ≤ 85°C			30	ns
		$V_{\rm NC} = V_{\rm NO} = V_{\rm CC}, R_{\rm L} = 50 \ \Omega,$	V _{CC} = 3 V, T _A = 25°	С	1	10	25	
t _{BBM}	Break-before-make time	$C_L = 35 \text{ pF}$, See Figure 15	$2.7 \text{ V} \le \text{V}_{CC} \le 3.6 \text{ V}$, –40°C ≤ T _A ≤ 85°C	0.5		30	ns
Q _C	Charge injection	V _{GEN} = 0, R _{GEN} = 0, C _L = 1 nF,				8.75		рС
C _{NC(OFF)} , C _{NO(OFF)}	NC and NO OFF capacitance	$(V_{NC} \text{ or } V_{NC}) = V_{CC} \text{ or } GND, Sv$	vitch OFF, See Figure	9 13		50		pF
C _{NC(ON)} , C _{NO(ON)}	NC and NO ON capacitance	$(V_{NC} \text{ or } V_{NC}) = V_{CC} \text{ or } GND, Sv$	vitch ON, See Figure	13		140		pF
C _{COM(ON)}	COM ON capacitance	V _{COM} = V _{CC} or GND, Switch Of	N, See Figure 13			140		pF
CI	Digital input capacitance	$V_{IN} = V_{CC}$ or GND, See Figure	_			2		pF
BW	Bandwidth	$R_L = 50 \Omega$, Switch ON, See Fig				50		MHz
O _{ISO}	OFF isolation	$R_L = 50 \Omega$, f = 1 MHz, See Figure 17				-72		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, f = 1 MHz, See Figu	ure 18			-72		dB
THD	Total harmonic distortion	$R_L = 600 \Omega, C_L = 50 pF, f = 20$		gure 20		0.005%		
SUPPLY		1						
				T _A = 25°C		15	200	·
Icc	Positive supply current	$V_{IN} = V_{CC}$ or GND, $V_{CC} = 3.6$ V		-40°C ≤ T _A ≤ 85°C			1200	nA

(1) All unused digital inputs of the device must be held at V_{CC}or GND to ensure proper device operation. See *Implications of Slow or Floating CMOS Inputs*.

STRUMENTS

EXAS

6.6 Electrical Characteristics: 2.5-V Supply

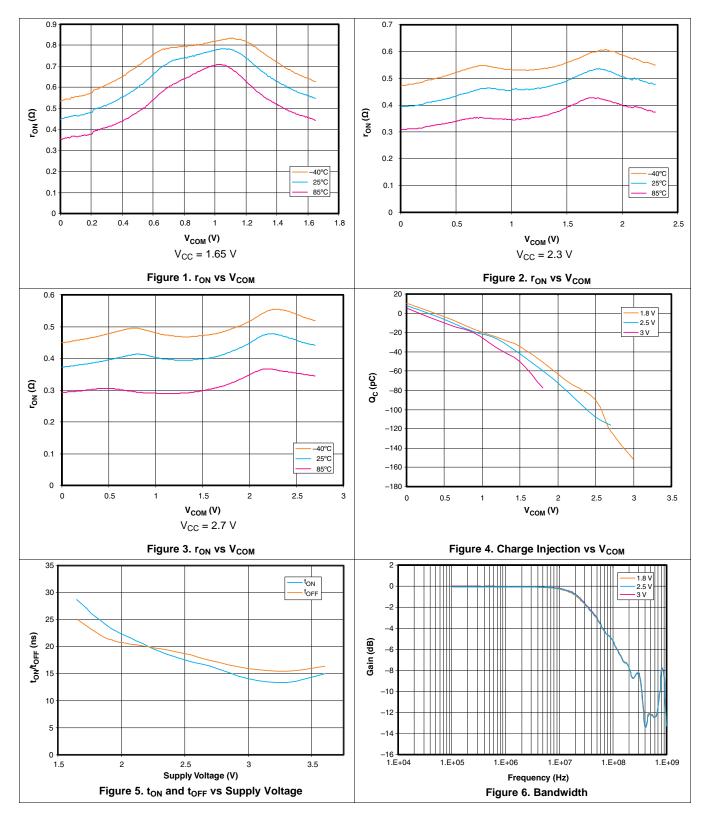
 V_{CC} = 2.5 V, T_A = 25°C (unless otherwise noted)

	PARAMETER	TES	T CONDITIONS		MIN	TYP	MAX	UNIT
ANALOG	SWITCH							
		$0 \le (V_{NO} \text{ or } V_{NC}) \le V_{CC}, V_{CC} = 2$	2.3 V.	$T_A = 25^{\circ}C$		0.55	0.75	
r _{PEAK}	Peak ON resistance	$I_{COM} = -8$ mA, Switch ON, See		–40°C ≤ T _A ≤ 85°C			0.9	Ω
		$V_{NO} \text{ or } V_{NC} = 1.8 \text{ V}, V_{CC} = 2.3 \text{ V},$ T		T _A = 25°C		0.56	0.75	_
r _{ON}	ON-state resistance	$I_{COM} = -8$ mA, Switch ON, See		-40°C ≤ T _A ≤ 85°C			0.85	Ω
	ON-state resistance match	V _{NO} or V _{NC} = 1.8 V or 0.8 V, V ₀		T _A = 25°C		0.1	0.15	
Δr_{ON}	between channels	$I_{COM} = -8$ mA, Switch ON, See		-40°C ≤ T _A ≤ 85°C			0.15	Ω
			$0 \le (V_{NO} \text{ or } V_{NC}) \le$			0.1	0.15	
r _{on(flat)}	ON-state resistance flatness	$V_{CC} = 2.3 \text{ V}, I_{COM} = -8 \text{ mA},$	$V_{NO} \text{ or } V_{NC} =$	T _A = 25°C			0.17	Ω
		Switch ON, See Figure 10	0.8 V or 1.8 V	-40°C ≤ T _A ≤ 85°C			0.2	
		V_{NC} or V_{NO} = 0.5 V and V_{COM} =	= 2.2 V. or	$T_A = 25^{\circ}C$	-50		50	
I _{NC(OFF)} , I _{NO(OFF)}	NC and NO OFF leakage current	V_{NC} or V_{NO} = 2.2 V and V_{COM} = V_{CC} = 2.7 V, Switch OFF, See	= 0.5 V;	-40°C ≤ T _A ≤ 85°C	-250		250	nA
				$T_A = 25^{\circ}C$	-50		50	
I _{NC(ON)} , I _{NO(ON)}	NC and NO ON leakage current	V_{NC} or V_{NO} = 0.5 V or 2.2 V, V_{C} V_{CC} = 2.7 V, Switch ON, See F		$-40^{\circ}C \le T_A \le 85^{\circ}C$	-400		400	nA
10(01)				$T_A = 25^{\circ}C$	-50		50	
I _{COM(ON)}	COM ON leakage current	V_{NC} or V_{NO} = Open, V_{COM} = 0.5 V_{CC} = 2.7 V, Switch ON, See F		$-40^{\circ}C \le T_A \le 85^{\circ}C$	-400		400	nA
	CONTROL INPUTS (IN1, IN2) ⁽¹⁾		<u> </u>		-400		400	
		2.3 V ≤ V _{CC} ≤ 2.7 V, –40°C ≤ T	. < 95°C		1 25			V
V _{IH}	Input logic high				1.25		0.5	V
V _{IL}	Input logic low	$2.3 \text{ V} \le \text{V}_{\text{CC}} \le 2.7 \text{ V}, -40^{\circ}\text{C} \le \text{T}$			50			v
I _{IH} , I _{IL}	H, IIL Input leakage current $V_{IN} = 2.7 \text{ V or GND}, V_{CC} = 2.7 \text{ V}$		V	$T_A = 25^{\circ}C$	-50 -50		50 50	nA
DYNAMIC				–40°C ≤ T _A ≤ 85°C	-50		50	
DINAMIC			V _{CC} = 2.5 V, T _A = 2	0.5%		23	45	
t _{ON}	Turnon time	$V_{COM} = V_{CC}, R_L = 50 \Omega,$ $C_L = 35 pF, See Figure 14$		/, –40°C ≤ T _A ≤ 85°C		23	45 50	ns
		- · · ·	$V_{CC} = 2.5 \text{ V}, \text{ T}_{A} = 2$			17	27	
t _{OFF}	Turnoff time	$V_{COM} = V_{CC}, R_L = 50 \Omega,$ $C_L = 35 pF, See Figure 14$		/, –40°C ≤ T _A ≤ 85°C			30	ns
			$V_{CC} = 2.5 \text{ V}, \text{ T}_{A} = 2$		2	14	30	
t _{BBM}	Break-before- make time	$V_{NC} = V_{NO} = V_{CC}, R_L = 50 \Omega,$ $C_L = 35 \text{ pF}, \text{ See Figure 15}$		/, –40°C ≤ T _A ≤ 85°C	1	14	35	ns
Q _C	Charge injection	V _{GEN} = 0, R _{GEN} = 0, C _L = 1 nF,		$r_{\rm A} = 4000 \pm 1_{\rm A} \pm 0000$	1	8	55	рС
C _{NC(OFF)} , C _{NO(OFF)}	NC and NO OFF capacitance	V_{NC} or $V_{\text{NO}} = V_{\text{CC}}$ or GND, Swi		13		50		pG
C _{NC(ON)} , C _{NO(ON)}	NC and NO ON capacitance	V_{NC} or $V_{NO} = V_{CC}$ or GND, Swi	tch ON, See Figure 1	13		140		pF
C _{COM(ON)}	COM ON capacitance	V _{COM} = V _{CC} or GND, Switch OI	N, See Figure 13			140		pF
CI	Digital input capacitance	$V_{IN} = V_{CC}$ or GND, See Figure				2		pF
BW	Bandwidth	$R_L = 50 \Omega$, Switch ON, See Figure 16				50		MHz
O _{ISO}	OFF isolation	$R_L = 50 \Omega$, f = 1 MHz, See Figure 17				-72		dB
X _{TALK}	Crosstalk	$R_1 = 50 \Omega$, f = 1 MHz, See Figu				-72		dB
THD	Total harmonic distortion	$R_{L} = 600 \Omega, C_{L} = 50 \text{ pF}, \text{ f} = 20$		igure 20	(0.006%		
SUPPLY		,,,		U				
				T _A = 25°C		10	150	
	Positive supply current	$V_{\rm IN} = V_{\rm CC} \text{ or GND}, V_{\rm CC} = 2.7 \text{ V}$		A				nA

(1) All unused digital inputs of the device must be held at V_{CC}or GND to ensure proper device operation. See *Implications of Slow or Floating CMOS Inputs*.

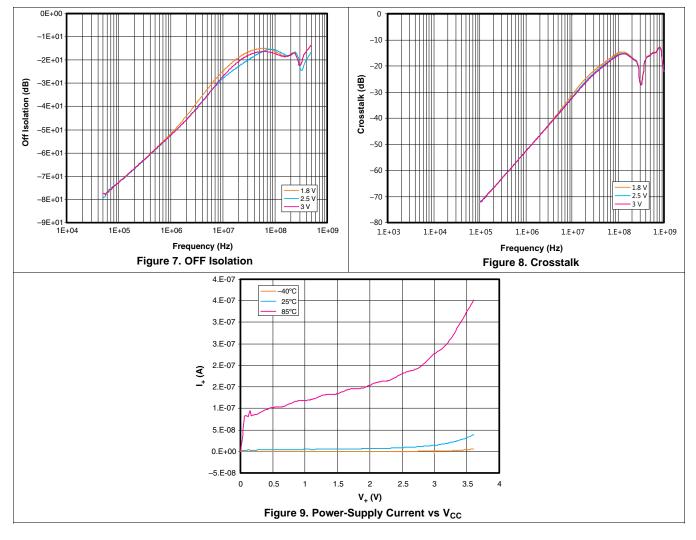
6.7 Electrical Characteristics: 1.8-V Supply

 V_{CC} = 1.8 V, T_{A} = 25°C (unless otherwise noted)


	PARAMETER	TE	ST CONDITIONS		MIN	ΤΥΡ	MAX	UNIT
ANALOG	SWITCH							
-	Deals ON registeres	$0 \le (V_{NO} \text{ or } V_{NC}) \le V_{CC}, V_{CC} =$	1.65 V,	$T_A = 25^{\circ}C$	0.8		1.25	
r _{PEAK}	Peak ON resistance	$I_{COM} = -2$ mA, Switch ON, See Figure 10		$-40^{\circ}C \le T_A \le 85^{\circ}C$			1.4	Ω
-	ON state registeres	V_{NO} or $V_{NC} = 1.5 V$, $V_{CC} = 1.6$	5 V,	$T_A = 25^{\circ}C$	0.6		0.95	
r _{ON}	ON-state resistance	$I_{COM} = -2$ mA, Switch ON, Se		$-40^{\circ}C \le T_A \le 85^{\circ}C$			1	Ω
4 -	ON-state resistance match	$V_{NO} \text{ or } V_{NC} = 0.6 \text{ V or } 1.5 \text{ V}, \text{ V}$	/ _{CC} = 1.65 V,	$T_A = 25^{\circ}C$	0.1		0.15	Ω
Δr_{ON}	between channels	$I_{COM} = -2$ mA, Switch ON, Se		$-40^{\circ}C \le T_A \le 85^{\circ}C$			0.15	Ω
			$0 \le (V_{NO} \text{ or } V_{NC}) \le V_{CC}$			0.35	0.13	
ron(flat)	ON-state resistance flatness	$V_{CC} = 1.65 \text{ V}, I_{COM} = -2 \text{ mA},$ Switch ON, See Figure 10	V _{NO} or V _{NC} =	$T_A = 25^{\circ}C$		0.05		Ω
			0.6 V or 1.5 V	$-40^{\circ}\mathrm{C} \leq \mathrm{T_{A}} \leq 85^{\circ}\mathrm{C}$			0.2	
hieropp	NC and NO OFF leakage	V_{NC} or V_{NO} = 0.3 V and V_{COM}		T _A = 25°C	-50		50	
I _{NC(OFF)} , I _{NO(OFF)}	current	V_{NC} or V_{NO} = 1.65 V and V_{COI} V_{CC} = 1.65, Switch OFF, See		$-40^{\circ}C \le T_A \le 85^{\circ}C$	-250		250	nA
I _{NC(ON)} ,	NC and NO ON leakage	V _{NC} or V _{NO} = 0.3 V or 1.65 V,	V _{COM} = Open.	$T_A = 25^{\circ}C$	-50		50	
I _{NO(ON)}	current	$V_{CC} = 1.95$ V, Switch ON, See		-40°C ≤ T _A ≤ 85°C	-400		400	nA
		V _{NC} or V _{NO} = Open, V _{COM} = 0	3 V or 1 65 V	T _A = 25°C	-50		50	
I _{COM(ON)}	COM ON leakage current	$V_{CC} = 1.95$ V, Switch ON, See		$-40^{\circ}C \le T_A \le 85^{\circ}C$	-400		400	nA
DIGITAL C	CONTROL INPUTS (IN1, IN2) ⁽¹⁾							
VIH	Input logic high	1.65 V ≤ V _{CC} ≤ 1.95 V, –40°C	≤ T _A ≤ 85°C		1			V
V _{IL}	Input logic low	1.65 V ≤ V _{CC} ≤ 1.95 V, –40°C	≤ T _A ≤ 85°C				0.4	V
				25°C		0	50	
I _{IH} , I _{IL}	Input leakage current	$V_{IN} = 1.95$ V or GND, $V_{CC} = 1$.95 V	–40°C ≤ T _A ≤ 85°C			150	nA
DYNAMIC		1						
	—	$V_{COM} = V_{CC}, R_{L} = 50 \Omega,$	V _{CC} = 1.8 V, T _A = 25°C	;		33	75	
t _{ON}	Turnon time	$C_L = 35 \text{ pF}$, See Figure 14	$1.65 \text{ V} \le \text{V}_{\text{CC}} \le 1.95 \text{ V},$	$-40^{\circ}C \le T_A \le 85^{\circ}C$			80	ns
	T "··	$V_{COM} = V_{CC}, R_{L} = 50 \Omega,$	V _{CC} = 1.8 V, T _A = 25°C			24	35	
t _{OFF}	Turnoff time	$C_L = 35 \text{ pF}$, See Figure 14	$1.65 \text{ V} \le \text{V}_{\text{CC}} \le 1.95 \text{ V},$	$-40^{\circ}C \le T_A \le 85^{\circ}C$			40	ns
		$V_{NC} = V_{NO} = V_{CC}, R_{L} = 50 \Omega,$	V _{CC} = 1.8 V, T _A = 25°C		2	20	40	
t _{BBM}	Break-before- make time	$C_L = 35 \text{ pF}$, See Figure 15	$1.65 \text{ V} \le \text{V}_{\text{CC}} \le 1.95 \text{ V},$	$-40^{\circ}C \le T_A \le 85^{\circ}C$	1		50	ns
Q _C	Charge injection	$V_{GEN} = 0$, $R_{GEN} = 0$, $C_L = 1$ nF	, See Figure 19			4		рС
C _{NC(OFF)} , C _{NO(OFF)}	NC and NO OFF capacitance	V_{NC} or $V_{NO} = V_{CC}$ or GND, Sv	vitch OFF, See Figure 13	3		50		pF
C _{NC(ON)} , C _{NO(ON)}	NC and NO ON capacitance	V_{NC} or $V_{NO} = V_{CC}$ or GND, Sv	vitch ON, See Figure 13			140		pF
C _{COM(ON)}	COM ON capacitance	$V_{COM} = V_{CC}$ or GND, Switch C	DN, See Figure 13			140		pF
CI	Digital input capacitance	$V_{IN} = V_{CC}$ or GND, See Figure	e 13			2		pF
BW	Bandwidth	$R_L = 50 \Omega$, Switch ON, See F	igure 16			48		MHz
O _{ISO}	OFF isolation	$R_L = 50 \ \Omega$, f = 1 MHz, See Figure 17				-73		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, f = 1 MHz, See Fig	gure 18			-72		dB
THD	Total harmonic distortion	$R_L = 600 \ \Omega, \ C_L = 50 \ pF, \ f = 20$	0 Hz to 20 kHz, See Fig	ure 20	().005%		
Supply								
1				$T_A = 25^{\circ}C$		10	100	n^
I _{CC}	Positive supply current	$V_{IN} = V_{CC}$ or GND, $V_{CC} = 1.95$) V	–40°C ≤ T _A ≤ 85°C			600	nA

(1) All unused digital inputs of the device must be held at V_{CC}or GND to ensure proper device operation. See *Implications of Slow or Floating CMOS Inputs*.

TS3A24157 SCDS208B-JUNE 2007-REVISED OCTOBER 2016 Texas Instruments


www.ti.com

6.8 Typical Characteristics

Typical Characteristics (continued)

7 Parameter Measurement Information

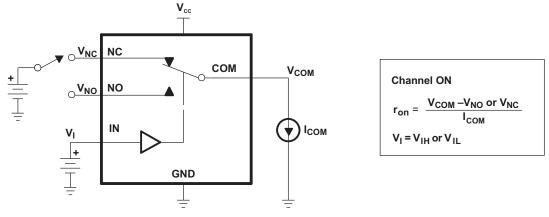
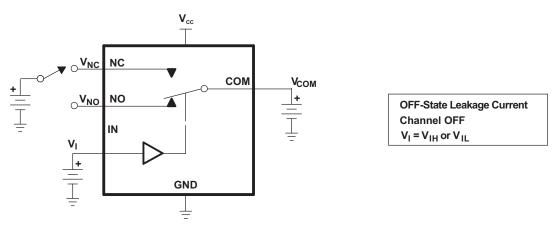
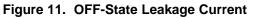
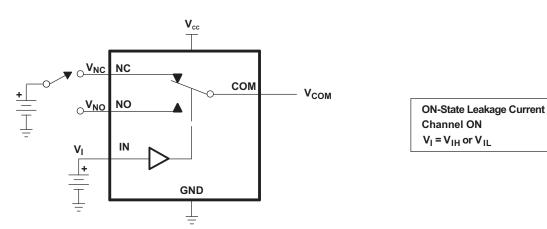
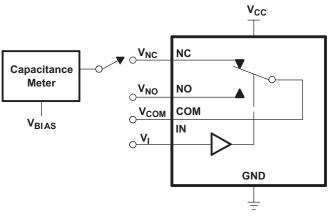
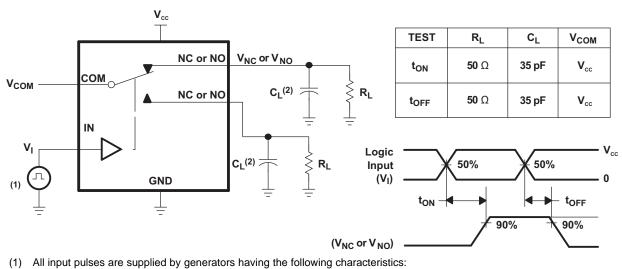





Figure 10. ON-State Resistance

 $I_{NC(OFF)}, I_{NC(PWROFF)}, I_{NO(OFF)}, I_{NO(PWROFF)}, I_{COM(OFF)}, I_{COM(PWROFF)}$



I_{COM(ON)}, I_{NC(ON)}, I_{NO(ON)}


Parameter Measurement Information (continued)

 $V_{BIAS} = V_{CC}$ or GND $V_I = V_{CC}$ or GND Capacitance is measured at NC, NO, COM, and IN inputs during ON and OFF conditions.

 $C_{I},\ C_{COM(ON)},\ C_{NC(OFF)},\ C_{NO(OFF)},\ C_{NC(ON)},\ C_{NO(ON)}$

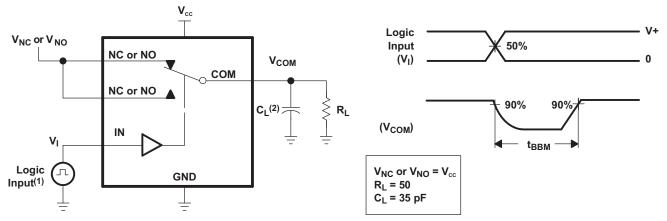

- PRR ≤ 10 MHz
- Z_O = 50 Ω
- t_r < 5 ns
- t_f < 5 ns
- (2) C_L includes probe and jig capacitance.

Figure 14. Turnon and Turnoff Time

ISTRUMENTS

Texas

Parameter Measurement Information (continued)

(1) All input pulses are supplied by generators having the following characteristics:

- PRR ≤ 10 MHz
- Z_O = 50 Ω
- $t_r < 5 \text{ ns}$
- t_f < 5 ns
- A. C_L includes probe and jig capacitance.

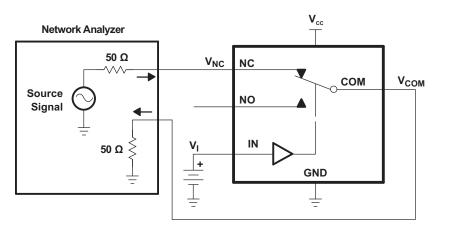


Figure 16. Bandwidth

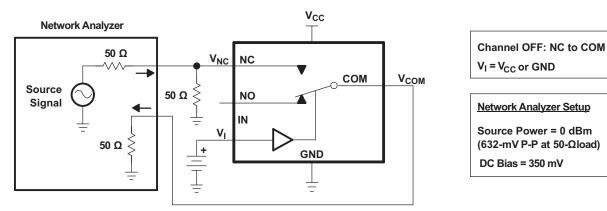
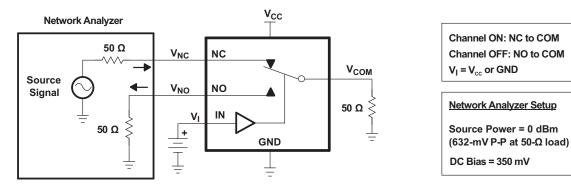


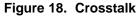
Figure 17. OFF Isolation

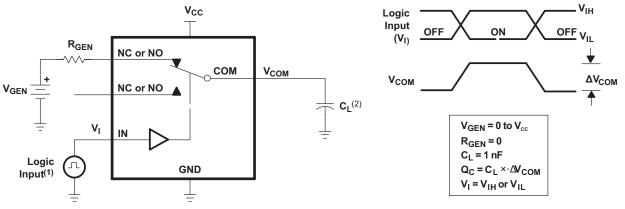
Channel ON: NC to COM

Network Analyzer Setup

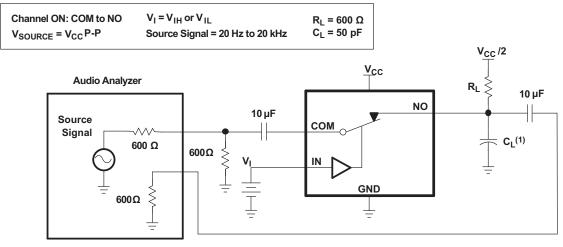
Source Power = 0 dBm


DC Bias = 350 mV


(632-mV P-P at 50-Ω load)


 $V_I = V_{cc}$ or GND

Parameter Measurement Information (continued)



(1) All input pulses are supplied by generators having the following characteristics:

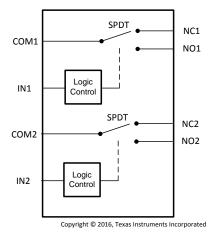
- PRR ≤ 10 MHz
- Z_O = 50 Ω
- t_r < 5 ns
- t_f < 5 ns
- (2) C_L includes probe and jig capacitance.

Figure 19. Charge Injection

(1) C_L includes probe and jig capacitance.

Figure 20. Total Harmonic Distortion

TS3A24157 SCDS208B – JUNE 2007 – REVISED OCTOBER 2016


www.ti.com

8 Detailed Description

8.1 Overview

The TS3A24157 is a bidirectional, 2-channel, single-pole double-throw (SPDT) analog switch. This switch offers low ON-state resistance and excellent THD performance which makes it great for interfacing with an ADC.

8.2 Functional Block Diagram

8.3 Feature Description

The TS3A24157 is a bidirectional device that has two single-pole, double-throw switches. The two channels of the switch are controlled independently by two digital signals; one digital control for each single-pole, doublethrow switch.

8.4 Device Functional Modes

To allow signals to pass between the NC and COM pins you must set the digital control IN pin Low

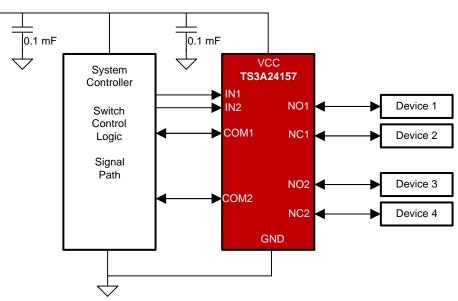
To allow signals to pass between the NO and COM pins you must set the digital control IN pin High

IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO			
L	ON	OFF			
Н	OFF	ON			

Table 1. Function Table

9 Application and Implementation

NOTE


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

3.3 V

The switches are bidirectional, so the NO, NC, and COM pins can be used as either inputs or outputs.

9.2 Typical Application

Copyright © 2016, Texas Instruments Incorporated

Figure 21. Typical Application Schematic

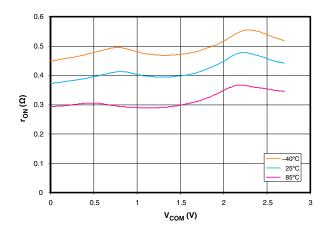
9.2.1 Design Requirements

The TS3A24157 can be properly operated without any external components.

When unused, pins COM, NC, and NO may be left floating.

Digital control pins IN must be pulled up to VCC or down to GND to avoid undesired switch positions that could result from the floating pin.

9.2.2 Detailed Design Procedure


Ensure that all of the signals passing through the switch are within the ranges specified in *Recommended Operating Conditions* to ensure proper performance.

Texas Instruments

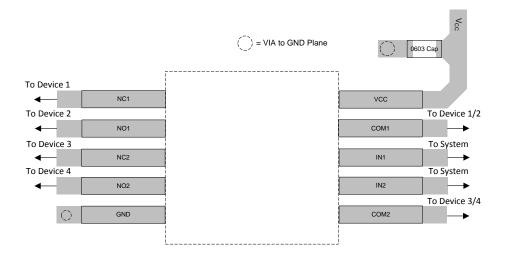
www.ti.com

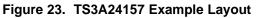
Typical Application (continued)

9.2.3 Application Curves

 $V_{CC} = 2.7 V$ Figure 22. r_{oN} vs V_{COM}

10 Power Supply Recommendations


TI recommends proper power-supply sequencing for all CMOS devices. Do not exceed the absolute-maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the device. Always sequence V_{CC} on first, followed by NO, NC, or COM. Although it is not required, power-supply bypassing improves noise margin and prevents switching noise propagation from the V_{CC} supply to other components. A 0.1- μ F capacitor, connected from VCC to GND, is adequate for most applications


11 Layout

11.1 Layout Guidelines

High-speed switches require proper layout and design procedures for optimum performance. Reduce stray inductance and capacitance by keeping traces short and wide. Ensure that bypass capacitors are placed as close to the device as possible. Use large ground planes where possible.

11.2 Layout Example

12 Device and Documentation Support

12.1 Device Support

12.1.1 Device Nomenclature

12.1.1 D	evice Nomenclature
V _{COM}	Voltage at COM.
V _{NC}	Voltage at NC.
V _{NO}	Voltage at NO.
r _{on}	Resistance between COM and NC or COM and NO ports when the channel is ON.
r _{PEAK}	Peak ON-state resistance over a specified voltage range.
Δr_{ON}	Difference of r _{ON} between channels in a specific device.
r _{on(flat)}	Difference between the maximum and minimum value of r _{ON} in a channel over the specified range of conditions.
I _{NC(OFF)}	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state under worst-case input and output conditions.
I _{NC(PWROFF}	Leakage current measured at the NC port during the power-down condition ($V_{CC} = 0$).
I _{NO(OFF)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state under worst-case input and output conditions.
I _{NO(PWROFF}	by Leakage current measured at the NO port during the power-down condition ($V_{CC} = 0$).
I _{NC(ON)}	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (COM) open.
I _{NO(ON)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) open.
I _{COM(ON)}	Leakage current measured at the COM port, with the corresponding channel (COM to NO or COM to NC) in the ON state and the output (NC or NO) open.
	F_{F} Leakage current measured at the COM port during the power-down condition (V _{CC} = 0).
V _{IH}	Minimum input voltage for logic high for the control input (IN).
V _{IL}	Maximum input voltage for logic low for the control input (IN).
VI	Voltage at the control input (IN).
I _{IH} , I _{IL}	Leakage current measured at the control input (IN).
t _{on}	Turnon time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM, NC, or NO) signal when the switch is turning ON.
t _{OFF}	Turnoff time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM, NC, or NO) signal when the switch is turning OFF.
t _{BBM}	Break-before-make time. This parameter is measured under the specified range of conditions and by the propagation delay between the output of two adjacent analog channels (NC and NO) when the control signal changes state.
Q _C	Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NC, NO, or COM) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, $Q_C = C_L \times \Delta V_{COM}$, C_L is the load capacitance and ΔV_{COM} is the change in analog output voltage.
C _{NC(OFF)}	Capacitance at the NC port when the corresponding channel (NC to COM) is OFF.
C _{NO(OFF)}	Capacitance at the NO port when the corresponding channel (NO to COM) is OFF.

TS3A24157

SCDS208B-JUNE 2007-REVISED OCTOBER 2016

www.ti.com

NSTRUMENTS

EXAS

Device Support (continued)

C_{NC(ON)} Capacitance at the NC port when the corresponding channel (NC to COM) is ON.

- **C**_{NO(ON)} Capacitance at the NO port when the corresponding channel (NO to COM) is ON.
- **C**_{COM(ON)} Capacitance at the COM port when the corresponding channel (COM to NC or COM to NO) is ON.
- **C**_I Capacitance of control input (IN).
- **O**_{ISO} OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF state.
- **X_{TALK}** Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to NC). This is measured in a specific frequency and in dB.
- **BW** Bandwidth of the switch. This is the frequency in which the gain of an ON channel is –3 dB below the DC gain.
- **THD** Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.
- I_{CC} Static power-supply current with the control (IN) pin at V_{CC} or GND.

12.2 Documentation Support

12.2.1 Related Documentation

For related documentation see the following: Implications of Slow or Floating CMOS Inputs (SCBA004)

12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.5 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.6 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

15-Apr-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TS3A24157DGSR	ACTIVE	VSSOP	DGS	10	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(JZO ~ JZR)	Samples
TS3A24157RSER	ACTIVE	UQFN	RSE	10	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	JZO	Samples
TS3A24157RSERG4	ACTIVE	UQFN	RSE	10	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	JZO	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

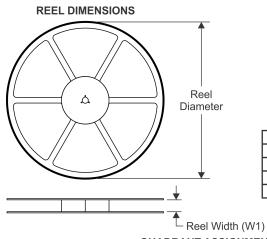
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

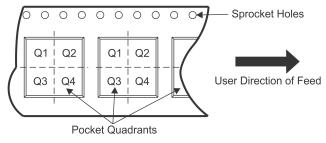
15-Apr-2017

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

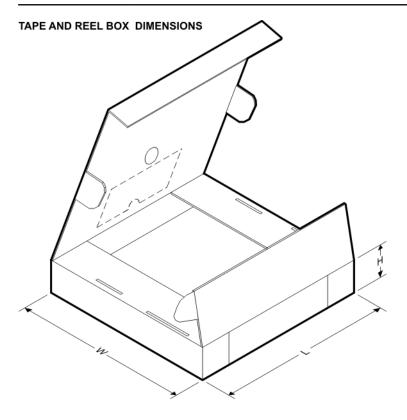
PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS3A24157DGSR	VSSOP	DGS	10	2500	330.0	12.4	5.3	3.3	1.3	8.0	12.0	Q1
TS3A24157RSER	UQFN	RSE	10	3000	179.0	8.4	1.75	2.25	0.65	4.0	8.0	Q1

TEXAS INSTRUMENTS

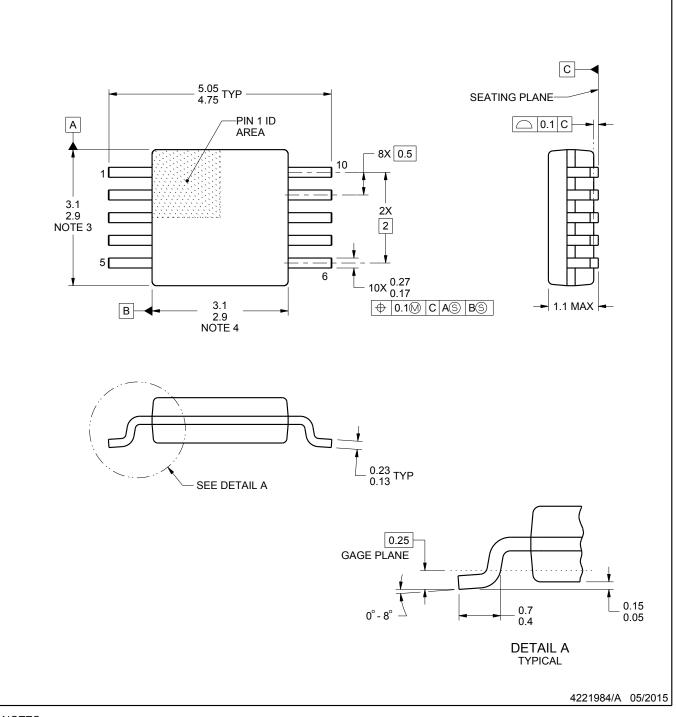
www.ti.com

PACKAGE MATERIALS INFORMATION

3-Aug-2017

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS3A24157DGSR	VSSOP	DGS	10	2500	346.0	346.0	35.0
TS3A24157RSER	UQFN	RSE	10	3000	203.0	203.0	35.0


DGS0010A

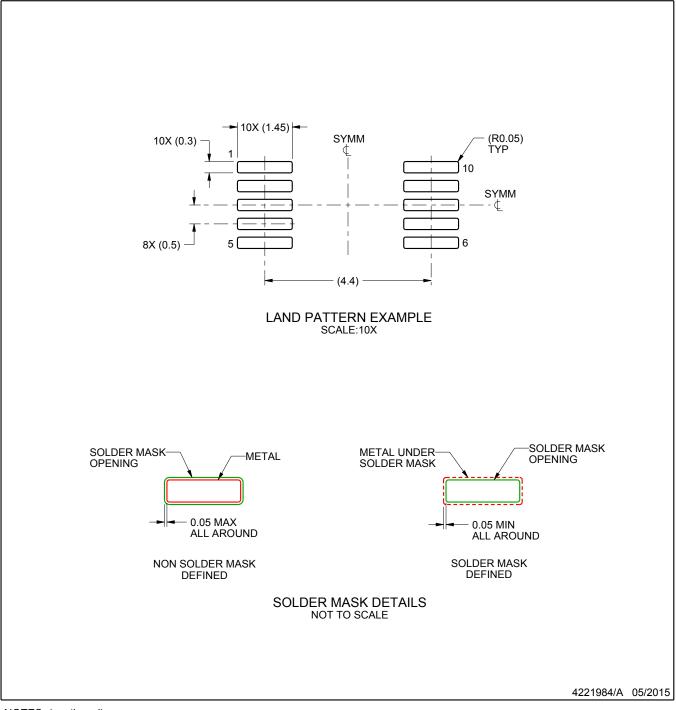
PACKAGE OUTLINE

VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187, variation BA.



DGS0010A

EXAMPLE BOARD LAYOUT

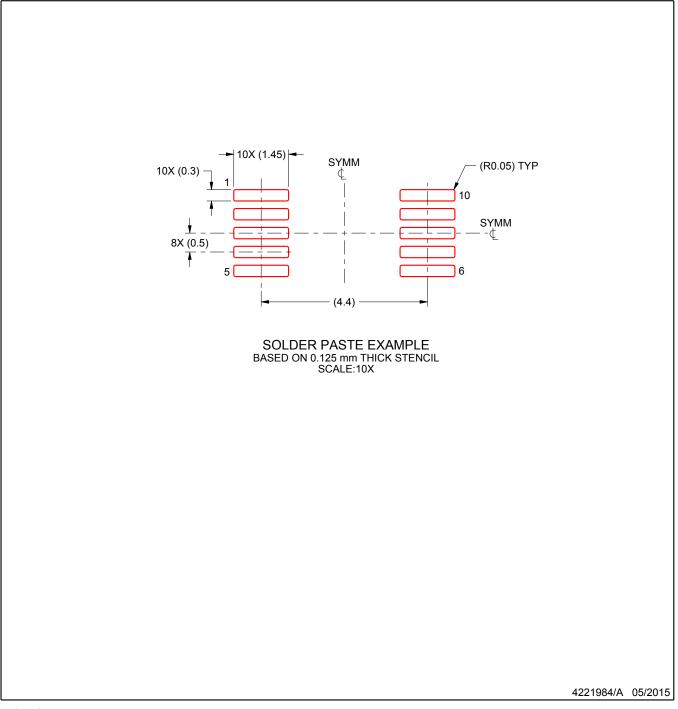
VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

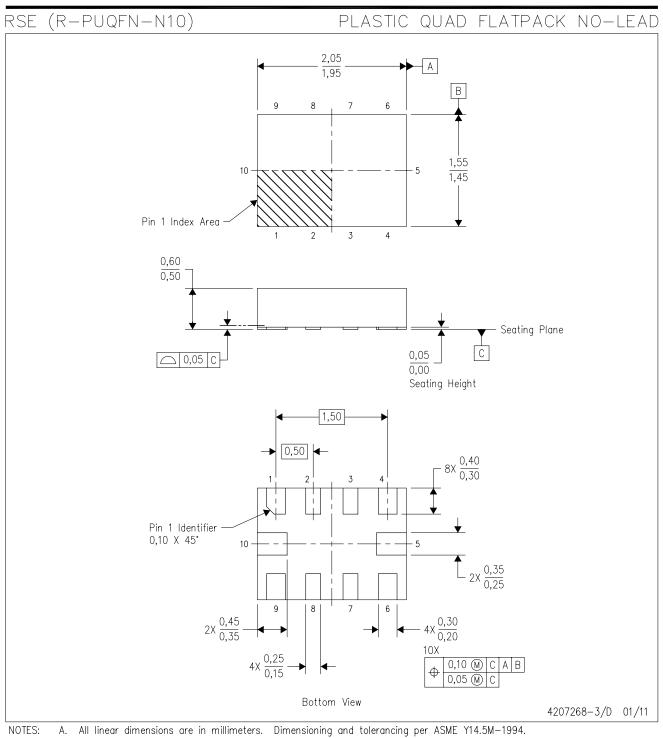


DGS0010A

EXAMPLE STENCIL DESIGN

VSSOP - 1.1 mm max height

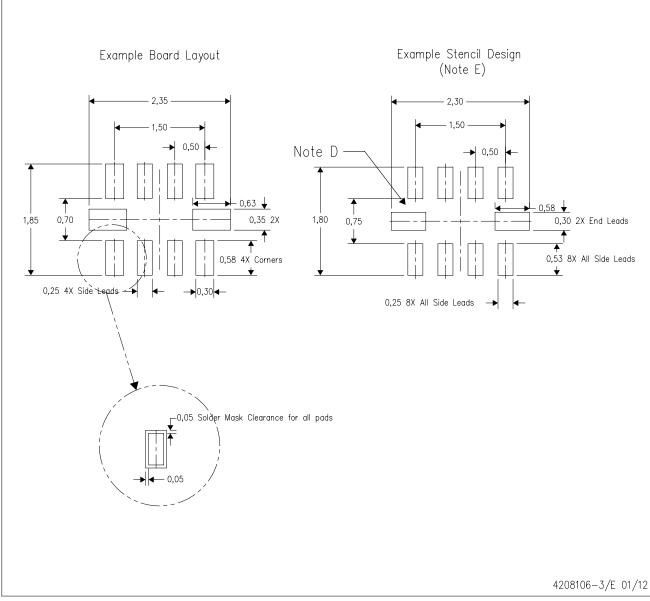
SMALL OUTLINE PACKAGE



NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA



- B. This drawing is subject to change without notice.
 C. QFN (Quad Flatpack No-Lead) package configuration.
 D. This package complies to JEDEC MO-288 variation UEFD.

RSE (R-PUQFN-N10)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over-print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated