VACUUMSCHMELZE K-no.: 24512

SPECIFICATION

Item no.: T60404-N4646-X662

Date:

17.08.2017

15 A Current Sensor for 5V- Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)

Customers Part no.: Page 1 of 4

Customer: Standard type Description

Closed loop (compensation) Current Sensor with magnetic field probe

- Printed circuit board mounting
- Casing and materials UL-listed

Characteristics

- Excellent accuracy
- · Very low offset current
- Very low temperature dependency and offset current drift
- · Very low hysteresis of offset current
- · Short response time
- · Wide frequency bandwidth
- Compact design
- · Reduced offset ripple

Applications

Mainly used for stationary operation in industrial applications:

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Switched Mode Power Supplies (SMPS)
- Power Supplies for welding applications
- Uninterruptible Power Supplies (UPS)

Electrical data - Ratings

I _{PN}	Primary nominal r.m.s. current	15	Α
V_{out}	Output voltage @ I _P	$V_{Ref} \pm (0.625^*I_P/I_{PN})$	V
V_{out}	Output voltage @ I _P =0, T _A =25°C	V _{Ref} ± 0.00221	V
V_{Ref}	External Reference voltage range	04	V
	Internal Reference voltage	2.5 ±0.005	V
K_N	Turns ratio	13 : 2000	

Accuracy - Dynamic performance data

		min.	typ.	max.	Unit
I _{P,max}	Max. measuring range	±51			
X	Accuracy @ I _{PN} , T _A = 25°C			0.7	%
$arepsilon_{L}$	Linearity			0.1	%
V _{out} - V _{Ref}	Offset voltage @ I _P =0, T _A = 25°C			±2.21	mV
$\Delta V_o / V_{Ref} / \Delta T$	Temperature drift of V_{out} @ $I_P=0$, $V_{Ref}=2.5V$, $T_A=-4$	085°C	2.3	20	ppm/°C
t_r	Response time @ 90% von I _{PN}		300		ns
Δt (I _{P,max})	Delay time at di/dt = 100 A/μs		200		ns
f	Frequency bandwidth	DC200			kHz

General data

		min.	typ.	max.	Unit
T_A	Ambient operating temperature	-40		+85	°C
Ts	Ambient storage temperature (acc to M3101)	-40		+85	°C
m	Mass		12		g
Vc	Supply voltage	4.75	5	5.25	V
Ic	Current consumption		15		mA

Constructed and manufactored and tested in accordance with EN 61800-5-1 (Pin 1 - 6 to Pin 7 - 10) Reinforced insulation, Insulation material group 1, Pollution degree 2

S _{clear}	Clearance (compo	nent without solder pad)	7,4		mm
Screep	Creepage (compor	nent without solder pad)	8,0		mm
V_{sys}	System voltage	overvoltage category 3	RMS	300	V
V_{work}	Working voltage	(tabel 7 acc. to EN61800-5-1)			
		overvoltage category 2	RMS	650	V
U_{PD}	Rated discharge v	voltage	peak value	1320	V
Max notentia	al difference acc to LIL F	508	RMS	600	VAC

Date	Name	Issue	Amendment					
17.08.17	DJ	83	Page 3, Type	Page 3, Type test M3064 accurately defined. Minor change				
13.03.17	17 KRe 83 Page A1, M-sheet M3101 added (storage temperature). Page A3, applicable documents changed. CN-17-050							
Hrsg.: R8	D-PD N	IPI	Bearb: DJ	MC-PM: KRe.			freig.: BEF	

check

SPECIFICATION

T60404-N4646-X662 Item no.:

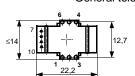
K-no.: 24512

Customer:

15 A Current Sensor for 5V- Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)

Date: 17.08.2017

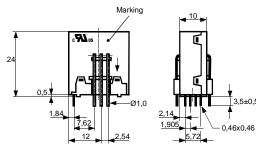

Connections:

Page 2 Customers Part no.: 4 of

Mechanical outline (mm):

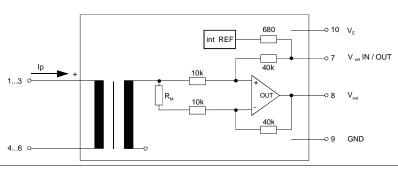
Standard type

General tolerances DIN ISO 2768-c



Tolerances grid distance ±0,2 mm

1...6: Ø 1 mm 7..10: 0,46*0,46 mm



DC = Date Code F = Factory

Schematic diagram

Possibilities of wiring

 $(@ T_A = 85^{\circ}C)$

primary windings	primar RMS	y current maximal	output current RMS	turns ratio	primary resistance	wiring
N_P	I _P [A]	Î _{P,max} [A]	$I_S(I_P)$ [mA]	K_N	R_P [m Ω]	
1	15	±51	2.5±0.625	1:2000	0.33	3 1 4 6
2	7.5	±25	2.5±0.625	2:2000	1.5	3 1 6>
3	5	±17	2.5±0.625	3:2000	3	3 1

Hrsg.: R&D-PD NPI	Bearb: DJ	MC-PM: KRe.		freig.: BEF
editor	designer	check		released

K-no.: 24512 SPECIFICATION Item no.: T60404-N4646-X662 Date: 17.08.2017 Tourisd Sensor for 5V- Supply Voltage For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)

Customers Part no.:

Page

3 of

4

Electrical Data

Standard type

Customer:

		min.	typ.	max.	Unit
V_{Ctot}	Maximum supply voltage (without function)			7	V
Ic	Supply Current with primary current	15m	$A + I_p * K_N + V_o$	_{ut} /R _L	mA
I _{out,SC}	Short circuit output current		±20		mA
R_P	Resistance / primary winding @ T _A =25°C		1		$m\Omega$
Rs	Secondary coil resistance @ T _A =85°C			67	Ω
$R_{i,Ref}$	Internal resistance of Reference input		670		Ω
R_{i} , (V_{out})	Output resistance of Vout			1	Ω
R_L	External recommended resistance of Vout	1			$k\Omega$
C_L	External recommended capacitance of Vout			500	pF
$\Delta X_{Ti} / \Delta T$	Temperature drift of X @ T _A = -40 +85 °C			40	ppm/K
$\Delta V_0 = \Delta (V_{out} - V_{Ref})$	Sum of any offset drift including:		3.5	10	mV
V_{0t}	Longtermdrift of V ₀		2		mV
V _{0T}	Temperature drift von V ₀ @ T _A = -40+85°C		2		mV
V_{0H}	Hysteresis of V_{out} @ I_P =0 (after an overload of 10 x I_{PN})		3	mV
$\Delta V_0/\Delta V_C$	Supply voltage rejection ratio			1	mV/V
V _{oss}	Offsetripple (with 1 MHz- filter first order)			30	mV
V _{oss}	Offsetripple (with 100 kHz- filter first order)		4	8	mV
V _{oss}	Offsetripple (with 20 kHz- filter first order)		1.2	2	mV
C_k	Maximum possible coupling capacity (primary - sec	condary)	5	10	pF
	Mechanical stress according to M3209/3 Settings: 10 – 2000 Hz, 1 min/Octave, 2 hours			30g	

Inspection (Measurement after temperature balance of the samples at room temperature; SC = significant characteristic)

V _{out} (SC)	(V)	M3011/6:	Output voltage (I _P =15A, 40-80Hz)	625±0.7%	mV
V_{out} - V_{Ref} (I _P =0)	(V)	M3226:	Offset voltage	± 2.21	mV
V_d	(V)	M3014:	Test voltage, rms, 1 s pin 1 – 6 vs. pin 7 – 10	1.5	kV
V _e	(AQ	L 1/S4)	Partial discharge voltage acc.M3024 (RMS) with V_{vor} (RMS)	1400 1750	V V

Type Testing (Pin 1 - 6 to Pin 7 - 10)

V_{W}	HV transient test according to M3064 (1,2 μs / 50 μs-wave 5 pulse → polarity +, 5 pulse → polarity -	8	kV	
V_d	Testing voltage to M3014	(5 s)	3	kV
V_{e}	Partial discharge voltage acc.M3024 (RMS)		1400	V
	with V _{vor} (RMS)		1750	V

Applicable documents

Temperature of the primary conductor should not exceed 105°C.

Current direction: A positive output voltage appears at point Vout vs Vref, by primary current in direction of the arrow.

Enclosures according to IEC529: IP50.

Further standards UL 508, file E317483, category NMTR2 / NMTR8

Hrsg.: R&D-PD NPI	Bearb: DJ	MC-PM: KRe.		freig.: BEF
editor	designer	check		released

SPECIFICATION

Item no.: T60404-N4646-X662

K-no.: 24512

Customer:

15 A Current Sensor for 5V- Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit

(electronic circuit)

Date: 17.08.2017

Page 4 of 4

Explanation of several of the terms used in the tablets (in alphabetical order)

t_r: Response time (describe the dynamic performance for the specified measurement range), measured as delay time at $I_P = 0.9 \cdot I_{PN}$ between a rectangular current and the output voltage V_{OUt} (I_p)

Customers Part no .:

 Δt (I_{Pmax}): Delay time (describe the dynamic performance for the rapid current pulse rate e.g short circuit current) measured between I_{Pmax} and the output voltage V_{out}(I_{Pmax}) with a primary current rise of di_P/dt \geq 100 A/ μ s.

 V_0 : Offset voltage between V_{out} and the rated reference voltage of V_{ref} = 2,5V. $V_o = V_{out}(0)\,$ - 2,5V

 U_{PD} Rated discharge voltage (recurring peak voltage separated by the insulation) proved with a sinusoidal voltage V_e $U_{PD} = \sqrt{2} * V_e / 1.5$

V_{vor} Defined voltage is the RMS valve of a sinusoidal voltage with peak value of 1,875 * U_{PD} required for partial discharge test in IEC 61800-5-1

 $V_{vor} = 1.875 * U_{PD} / \sqrt{2}$

Standard type

V_{sys} System voltage RMS value of rated voltage according to IEC 61800-5-1

Vwork Working voltage voltage according to IEC 61800-5-1 which occurs by design in a circuit or across insulation

V_{0H}: Zero variation of V_o after overloading with a DC of tenfold the rated value

V_{0t}: Long term drift of V₀ after 100 temperature cycles in the range -40 bis 85 °C.

X: Permissible measurement error in the final inspection at RT, defined by

 $X = 100 \cdot \left| \frac{V_{out}(I_{PN}) - V_{out}(0)}{0.625 V} - 1 \right| \%$

X_{ges}(I_{PN}): Permissible measurement error including any drifts over the temperature range by the current measurement I_{PN}

 $\mathbf{X}_{\text{ges}} = 100 \cdot \left| \frac{\mathbf{V}_{\text{out}} \left(\mathbf{I}_{\text{PN}} \right) - 2,5V}{0,625 \text{V}} - 1 \right| \quad \% \quad \text{or} \quad \mathbf{X}_{\text{ges}} = 100 \cdot \left| \frac{\mathbf{V}_{\text{out}} \left(\mathbf{I}_{\text{PN}} \right) - V_{\textit{ref}}}{0,625 \text{V}} - 1 \right| \quad \%$

 $\varepsilon_{\rm L}\!\!: \qquad \qquad \text{Linearity fault defined by} \qquad \varepsilon_{\rm L}\!\!=\!100 \cdot \left| \frac{I_{\rm P}}{I_{\rm PN}} - \frac{V_{\scriptscriptstyle out}(I_{\scriptscriptstyle P}) - V_{\scriptscriptstyle out}(0)}{V_{\scriptscriptstyle out}(I_{\scriptscriptstyle PN}) - V_{\scriptscriptstyle out}(0)} \right| \, \%$