VACUUMSCHMELZE K-no.: 24510

SPECIFICATION

Item no.: T60404-N4646-X654

10.: 24510 | 50 A Current Sensor modul for 5V-Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)

Date: 11.08.2014

Standard type Customers Part no.: Page 1 of 2

Customer: Description

- Closed loop (compensation)
 Current Sensor with magnetic field probe
- Printed circuit board mounting
- · Casing and materials UL-listed

Characteristics

- Excellent accuracy
- · Very low offset current
- Very low temperature dependency and offset current drift
- · Very low hysteresis of offset current
- · Short response time
- · Wide frequency bandwidth
- Compact design
- Reduced offset ripple

Applications

Mainly used for stationary operation in industrial applications:

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Switched Mode Power Supplies (SMPS)
- Power Supplies for welding applications
- Uninterruptible Power Supplies (UPS)

Electrical data - Ratings

I _{PN}	Primary nominal r.m.s. current	50	Α
V_{out}	Output voltage @ I _P	$2.5 \pm (0.625*I_P/I_{PN})$	V
V _{out}	Output voltage @ I _P =0, T _A =25°C	2.5 ± 0.0058	V
V_{Ref}	Reference voltage	2.5 ± 0.005	V
K _N	Turns ratio	13 : 1400	

Accuracy - Dynamic performance data

		min.	typ.	max.	Unit
I _{P,max}	Max. measuring range	±150			
X	Accuracy @ I _{PN} , T _A = 25°C			0.7	%
ϵ_{L}	Linearity			0.1	%
V_{out} -2,5 V	Offset voltage @ I _P =0, T _A = 25°C			±5.8	mV
$\Delta V_{out}/2,5V/\Delta T$	Temperature drift of V _{out} @ I _P =0, T _A = -4085°C		13	26	ppm/K
t _r	Response time @ 90% von I _{PN}		300		ns
Δt (I _{P,max})	Delay time at di/dt = 100 A/μs		200		ns
f	Frequency bandwidth	DC200			kHz

General data

		mın.	typ.	max.	Unit
T_A	Ambient operating temperature	-40		+85	°C
T_S	Ambient storage temperature	-40		+85	°C
m	Mass		12		g
V_{C}	Supply voltage	4.75	5	5.25	V
Ic	Current consumption		15		mA

Constructed and manufactored and tested in accordance with EN 61800-5-1 (Pin 1 - 6 to Pin 7 - 9) Reinforced insulation, Insulation material group 1, Pollution degree 2

Sclear	Clearance (compo	nent without solder pad)	7.5		mm
Screep	Creepage (compoi	nent without solder pad)	8.0		mm
V_{sys}	System voltage	System voltage overvoltage category 3		300	V
V_{work}	Working voltage	(tabel 7 acc. to EN61800-5-1)			
		overvoltage category 2	RMS	650	V
U_{PD}	Rated discharge	voltage	peak value	1320	V
Max. potential difference acc. to UL 508			RMS	600	V AC

Date	Name	Issue	Amendment					
11.08.14	KRe.	83	Marking: Issu	arking: Issue "83" added. CN-14-073.				
Hrsg.: KB-E Bearb		arb: DJ		KB-PM: Sn.			freig.: HS	
editor		desi	gner		check			Teleaseu

SPECIFICATION

Item no.: T60404-N4646-X654

K-no.: 24510

50 A Current Sensor modul for 5V-Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit) Date: 11.08.2014

Customer: Standard type

Customers Part no.:

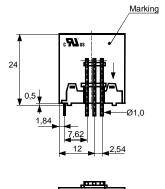
Page 2 of Connections:

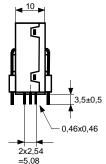
1...6: Ø 1 mm

7...9: 0,46*0,46 mm

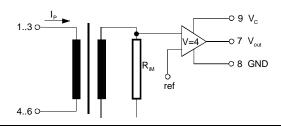
2

Mechanical outline (mm):


General tolerances DIN ISO 2768-c


Tolerances grid distance ±0,2mm

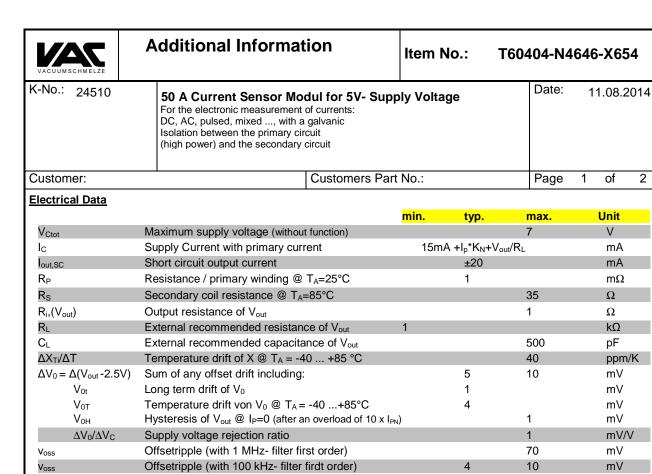
DC = Date Code F = Factory



0.00

UL-sign 4646-X654-83 F DC

Schematic diagram


Possibilities of wiring (@ T_A = 85°C)

primary windings	primar	y current maximal	output current RMS	turns ratio	primary resistance	wiring
N _P	I _P [A]	Î _{P,max} [A]	I _S (I _P) [mA]	K_{N}	R_P [m Ω]	
1	50	±150	2.5±0.625	1:1400	0.33	3 1
2	12	±75	2.5±0.300	2:1400	1.5	3 1 6 6 7
3	8	±50	2.5±0.300	3:1400	3	> ³ / ₄ ¹ ⁶ >

Temperature of the primary conductor should not exceed 110°C. Additional information is obtainable on request.

This specification is no declaration of warranty acc. BGB §443

Hrsg.: KB-E	Bearb: DJ	KB-PM: Sn.		freig.: HS
editor	designer	check		released

Inspection (Measurement after temperature balance of the samples at room temperature) SC = significant characteristic

Maximum possible coupling capacity (primary – secondary)

V _{out} (SC)	(V) M3011/6:	Output voltage vs. internal reference (I _P =3x10As, 40-80Hz)	625±1%	mV
V_{out} –2.5V (I_F	_P =0) (V) M3226:	Offset voltage	± 5.8	mV
V_d	(V) M3014:	Test voltage, rms, 1 s pin 1 – 6 vs. pin 7 – 9	1.5	kV
V _e	(AQL 1/S4)	Partial discharge voltage acc.M3024 (RMS) with V _{vor} (RMS)	1400 1750	V

Type Testing (Pin 1 - 6 to Pin 7 - 9)

Voss

Designed according standard EN 50178 with insulation material group 1

Offsetripple (with 20 kHz- filter first order)

Mechanical stress according to M3209/3 Settings: 10 - 2000 Hz, 1 min/Octave, 2 hours

V_W	HV transient test according (to M3064) (1,2 μs / 50 μs-wa	HV transient test according (to M3064) (1,2 µs / 50 µs-wave form)				
V _d	Testing voltage to M3014	(5 s)	3	kV		
Ve	Partial discharge voltage acc.M3024 (RMS)		1400	V		
	with V _{vor} (RMS)		1750	V		

Applicable documents

Current direction: A positive output current appears at point Is, by primary current in direction of the arrow. Enclosures according to IEC529: IP50.

Further standards UL 508; file E317483, category NMTR2 / NMTR8

Datum	Name	Index	Änderung	•	•			
11.08.14	KRe	83	Inspection: Vo	nspection: Vout changed from lp=50A, 40-80Hz → lp=3x10As, 40-80Hz. M3011/6 defined as SC-value. CN-14-073				
			Further stand	ards added. CN-866				
		arb: DJ		KB-PM: Sn.			freig.: HS released	

1

2

10

30g

mV

pF

2

Additional Information

Item No.: T60404-N4646-X654

K-No.: 24510

Customer:

50 A Current Sensor Modul for 5V- Supply Voltage

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit

Date: 11.08.2014

Customers Part No.: Page 2 of 2

Explanation of several of the terms used in the tablets (in alphabetical order)

t_r: Response time (describe the dynamic performance for the specified measurement range), measured as delay time at $I_P = 0.9$. I_{PN} between a rectangular current and the output voltage V_{OUt} (I_p)

 Δt (I_{Pmax}): Delay time (describe the dynamic performance for the rapid current pulse rate e.g short circuit current) measured between I_{Pmax} and the output voltage V_{out}(I_{Pmax}) with a primary current rise of di_P/dt \geq 100 A/ μ s.

 U_{PD} Rated discharge voltage (recurring peak voltage separated by the insulation) proved with a sinusoidal voltage V_e U_{PD} = $\sqrt{2}$ * V_e / 1,5

V_{vor} Defined voltage is the RMS valve of a sinusoidal voltage with peak value of 1,875 * U_{PD} required for partial discharge test in IEC 61800-5-1

 $V_{vor} = 1,875 * U_{PD} / \sqrt{2}$

V_{sys} System voltage RMS value of rated voltage according to IEC 61800-5-1

Vwork Working voltage voltage according to IEC 61800-5-1 which occurs by design in a circuit or across insulation

 V_0 : Offset voltage between V_{out} and the rated reference voltage of $V_{ref} = 2.5V$.

 $V_0 = V_{out}(0) - 2.5V$

V_{0H}: Zero variation of V₀ after overloading with a DC of tenfold the rated value

V_{0t}: Long term drift of V₀ after 100 temperature cycles in the range -40 bis 85 °C.

X: Permissible measurement error in the final inspection at RT, defined by

$$X = 100 \cdot \left| \frac{V_{out}(I_{PN}) - V_{out}(0)}{0,625V} - 1 \right| \%$$

X_{ges}(I_{PN}): Permissible measurement error including any drifts over the temperature range by the current measurement I_{PN}

$$\mathbf{X}_{\text{ges}} = 100 \cdot \left| \frac{\mathbf{V}_{\text{out}} \left(\mathbf{I}_{\text{PN}} \right) - 2,5V}{0,625 \text{V}} - 1 \right| \quad \% \quad \text{or} \quad \mathbf{X}_{\text{ges}} = 100 \cdot \left| \frac{\mathbf{V}_{\text{out}} \left(\mathbf{I}_{\text{PN}} \right) - V_{\textit{ref}}}{0,625 \text{V}} - 1 \right| \quad \%$$

ε_L: Linearity fault defined by $\varepsilon_{L} = 100 \cdot \left| \frac{I_{P}}{I_{DN}} - \frac{V_{out}(I_{P}) - V_{out}(0)}{V_{out}(I_{DN}) - V_{out}(0)} \right| \%$

This "Additional information" is no declaration of warranty according BGB §443.

Hrsg.: KB-E Bearb: DJ KB-PM: Sn. freig.: HS released