SPECIFICATION T60404-N4646-X652 Item no.: K-no.: 24508 Date: 20.11.2013 15 A Current Sensor Module for 5V- Supply Voltage For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit) Customers Part no.: Page 1 of Customer: Standard type Characteristics Description **Applications** Closed loop (compensation) Excellent accuracy Mainly used for stationary operation in industrial applications: Current Sensor with magnetic Very low offset current field probe AC variable speed drives and servo motor Very low temperature dependency and offset Printed circuit board mounting drives current drift Static converters for DC motor drives Casing and materials UL-listed Very low hysteresis of offset current short response time Battery supplied applications Switched Mode Power Supplies (SMPS) Wide frequency bandwidth Power Supplies for welding applications Compact design Uninterruptible Power Supplies (UPS) Reduced offset ripple Electrical data - Ratings Primary nominal r.m.s. current I_{PN} $V_{\text{out}} \\$ Output voltage @ IP $2.5 \pm (0.625*I_P/I_{PN})$ ٧ Output voltage @ I_P=0, T_A=25 ℃ 2.5 ± 0.0071 V_{out} V_{Ref} Reference voltage 2.5 ± 0.005 ٧ K_N Turns ratio 1...3:2000 Accuracy - Dynamic performance data min. Unit typ. max. Max. measuring range $I_{P,max}$ ±51 Accuracy @ I_{PN}, T_A= 25 ℃ 0.7 % Χ Linearity 0.1 Vout -2,5V Offset voltage @ I_P=0, T_A= 25 ℃ ±7.1 mV $\Delta V_{out}/2,5V/\Delta T$ Temperatur drift of Vout @ I_P=0, T_A= -40...85 ℃ 16 32 ppm/K

2

ns

mΑ

Δι (iP,max)	Delay time at divut = 100 A/µS		200		113
f	Frequency bandwidth	DC20		kHz	
General data					
'' 		min.	typ.	max.	Unit
T_A	Ambient operating temperature	-40		+85	℃
Ts	Ambient storage temperature	-40		+85	$^{\circ}$
m	Mass		12		g
V_{C}	Supply voltage	4.75	5	5.25	V

Response time @ 90% von I_{PN}

Delay time at di/dt = 100 A/us

Current consumption

Λ+ /I

Constructed and manufactored and tested in accordance with EN 61800-5-1 (Pin 1 - 6 to Pin 7 - 9) Reinforced insulation, Insulation material group 1, Pollution degree 2

300

15

S_{clear}	Clearance (compo	nent without solder pad)	7.5		mm
Screep	Creepage (compor	nent without solder pad)	8.0		mm
V_{sys}	System voltage	overvoltage category 3	RMS	300	V
V_{work}	Working voltage	(tabel 7 acc. to EN61800-5-1)			
		overvoltage category 2	RMS	650	V
U_PD	Rated discharge v	oltage on the state of the stat	peak value	1320	V
Max. potential diffe	erence acc. to UL 5	508	RMS	600	V_{AC}

Date	Name	Issue	Amendment							
20.11.13	KRe	83	Max. Potentia	lax. Potential added, Clearance changed from 7 to 7,5 and creepage from 7 to 8,0. Offset voltage ±20 to ±7.1						
			Vout fom ±0.0	out fom ±0.020 to ±0.0071. f von DC100 at f = DC200 kHz. Marking changed UL-sign+ 4646–X652. CN-863						
Hrsg.: KB	-E	Bea	arb: Le		KB-PM: KRe			freig.: HS		
editor		desi	gner		check			Teleased		

SPECIFICATION

Item no.: T60404-N4646-X652

K-no.: 24508

15 A Current Sensor Module for 5V- Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)

Date: 20.11.2013

Page

Customer: Standard type

Customers Part no.: General tolerances DIN ISO 2768-c

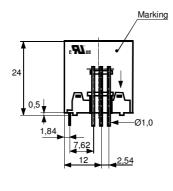
Connections:

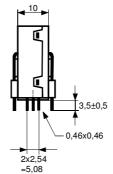
of

2

2

1...6: Ø 1 mm

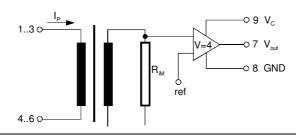

7...9: 0,46*0,46 mm


Mechanical outline (mm):

22,2

Tolerances grid distance ±0,2mm

DC = Date Code F = Factory



Marking:

7AN UL-sign 4646-X652 DC

Possibilities of wiring (@ T_A = 85 °C)

primary windings N _P	primary RMS	y current maximal Î _{P,max} [A]	output voltage RMS V _{out} (I _{PN}) [V]	turns ratio	primary resistance R _P [mΩ]	wiring
1	15	±51	2.5±0.625	1:2000	0.33	3 1 4 6
2	7,5	±25	2.5±0.625	2:2000	1.5	3 1 6 7
3	5	±17	2.5±0.625	3:2000	3	3 1 6 >

Temperature of the primary conductor should not exceed 110 $^{\circ}$ C.

Additional information is obtainable on request.

This specification is no declaration of warranty acc. BGB §443 dar.

Hrsg.: KB-E	Bearb: Le	KB-PM: KRe		freig.: HS
editor	designer	check		released

VACUUMSCHMELZE			n li	tem No.	: 160	404-N464	6-X652
-No.: 24508	;	Date:	20.11.2013				
Customer:		С	ustomers Part N	0.:		Page 1	of 2
Electrical Data		<u>'</u>	_		_		
M	N 4 =			nin.	typ.	max.	Unit
V _{Ctot}		supply voltage (without fu	,	4 F A	1 *14 \ \ /D	7	V
Ic		rrent with primary curren	ΙT	15MA +	$I_p*K_N+V_{out}/R$	L	mA
lout,SC		it output current			±20		mA
R _P		e / primary winding @ T _A			1		mΩ
R_S	•	coil resistance @ $T_A=85$	o°C			67	Ω
R_{i} ,(V_{out})	•	istance of V _{out}				1	Ω
R_L		ecommended resistance					kΩ
CL		commended capacitanc				500	pF
$\Delta X_{Ti}/\Delta T$	Temperatu	re drift of $X @ T_A = -40$.	+85 ℃			40	ppm/K
$\Delta V_0 = \Delta (V_{out} \text{-} 2.5 V)$	Sum of an	y offset drift including:			6	12	mV
V_{0t}	Long term	drift of V ₀			2		mV
V_{0T}	Temperatu	are drift von $V_0 @ T_A = -4$.0+85℃		5		mV
V_{0H}	Hysteresis	of Vout @ I _P =0 (after an o	verload of 10 x I _{PN})		3	mV	
$\Delta V_0/\Delta V_C$	Supply vol	tage rejection ratio				1	mV/V
V _{OSS}	Offsetrippl	e (with 1 MHz- filter first	order)			70	mV
V _{OSS}	Offsetrippl	e (with 100 kHz- filter fire	dt order)		5.5	11	mV
V _{OSS}	Offsetrippl	e (with 20 kHz- filter first	order)		1.5	3	mV
C_k		possible coupling capaci		ndary)	5	10	pF
		ll stress according to M3 0 – 2000 Hz, 1 min/Deca				30g	
nspection (Measuren	nent after tem	perature balance of the sai	mples at room tempe	erature)			
$V_{out} (I_P = I_{PN})$ (V)	M3011/6:	Output voltage vs. inte	rnal reference (I _P =	15A, 40-80H	Hz)	625±0.7%	mV
V_{out} -2.5V (I_P =0) (V)	M3226:	Offset voltage				± 0.0071	V
V _d (V)	M3014:	Test voltage, rms, 1 s pin 1 – 6 vs. pin 7 – 9				1.5	kV
V _e (AQL	1/S4)	Partial discharge volta with V_{vor} (RMS)	ge acc.M3024 (RN	MS)		1400 1750	V V
Type Testing (Pin 1 -	6 to Pin 7 - 9))					
'		ν Ν 50178 with insulation ι	material group 1				
V _W		nt test according (to M30	<u> </u>	s-wave for	m)	8	kV
V _d		Itage to M3014	ου τ ₎ (1,2 μο / ου μ	o wave lon	(5 s)	3	kV
V _e		charge voltage acc.M302	24 (RMS)		(0 0)	1400	V
	with V_{vor} (I		(- /			1750	V
Applicable documen	ts						
	ive output ou	rrent appears at point Is, by	nrimary current in d	irection of th	arrow		

Datum		Index	Änderung						
20.11.13	KRe	83	Vctot change	ctot changed from 6 to 7V, Vout Offset voltage von \pm 0.020 to \pm 0.0071 V. Applicable documents:					
			Further stand	urther standards added. CN-863					
Hrsg.: KB-E Bearb:		LO		KB-PM: KRe			freig.: HS released		

Additional Information

Item No.: T60404-N4646-X652

K-No.: 24508

15 A Current Sensor Module for 5V- Supply Voltage

Date: 20.11.2013

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit

Customer: Customers Part No.: Page 2 of 2

Explanation of several of the terms used in the tablets (in alphabetical order)

 t_r : Response time (describe the dynamic performance for the specified measurement range), measured as delay time at $I_P = 0.9$ I_{PN} between a rectangular current and the output voltage V_{OUt} (I_D)

 Δt (I_{Pmax}): Delay time (describe the dynamic performance for the rapid current pulse rate e.g short circuit current) measured between I_{Pmax} and the output voltage $V_{out}(I_{Pmax})$ with a primary current rise of dip/dt \geq 100 A/ μ s.

 U_{PD} Rated discharge voltage (recurring peak voltage separated by the insulation) proved with a sinusoidal voltage V_e $U_{PD} = \sqrt{2 * V_e / 1.5}$

V_{vor} Defined voltage is the RMS valve of a sinusoidal voltage with peak value of 1,875 * U_{PD} required for partial discharge test in IEC 61800-5-1

 $V_{vor} = 1.875 * U_{PD} / \sqrt{2}$

V_{sys} System voltage RMS value of rated voltage according to IEC 61800-5-1

V_{work} Working voltage voltage according to IEC 61800-5-1 which occurs by design in a circuit or across insulation

 V_0 : Offset voltage between V_{out} and the rated reference voltage of $V_{ref} = 2,5V$.

 $V_0 = V_{out}(0) - 2.5V$

 V_{0H} : Zero variation of V_0 after overloading with a DC of tenfold the rated value

V_{0t}: Long term drift of V₀ after 100 temperature cycles in the range -40 bis 85 °C.

X: Permissible measurement error in the final inspection at RT, defined by

 $X = 100 \cdot \left| \frac{V_{out}(I_{PN}) - V_{out}(0)}{0,625V} - 1 \right| \%$

X_{ges}(I_{PN}): Permissible measurement error including any drifts over the temperature range by the current measurement I_{PN}

 $X_{\text{ges}} = 100 \cdot \left| \frac{V_{\text{out}} \left(I_{\text{PN}} \right) - 2,5V}{0,625V} - 1 \right| \quad \% \quad \text{or} \quad X_{\text{ges}} = 100 \cdot \left| \frac{V_{\text{out}} \left(I_{\text{PN}} \right) - V_{\textit{ref}}}{0,625V} - 1 \right| \quad \%$

 $\varepsilon_{\rm L}: \qquad \qquad \text{Linearity fault defined by} \qquad \varepsilon_{\rm L} = 100 \cdot \left| \frac{I_{\rm P}}{I_{\rm PN}} - \frac{V_{out}(I_{P}) - V_{out}(0)}{V_{out}(I_{PN}) - V_{out}(0)} \right| \, \%$

This "Additional information" is no declaration of warranty according BGB §443.

Hrsg.: KB-E	Bearb: Le	KB-PM: KRe		freig.: HS
editor	designer	check		released