

T60404-N4646-X412 Item no.:

K-No.: 24618 50/100A Current Sensor

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit (electronic circuit)



Date: 21.01.2019

> 1 of

4

Customer: Standard type Customers Part no.:

### **Description**

- Closed loop (compensation) Current Sensor with magnetic field probe
- Printed circuit board mounting
- Casing and materials UL-listed

### **Characteristics**

- Excellent accuracy
- · Very low offset current
- · Very low temperature dependency and offset current drift
- · Very low hysteresis of offset current
- Low response time
- Wide frequency bandwidth
- Compact design
- · Reduced offset ripple

### **Applications**

Mainly used for stationary operation in industrial applications:

Page

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Switched Mode Power Supplies (SMPS)
- Power Supplies for welding applications
- Uninterruptable Power Supplies (UPS)

### Electrical data - Ratings

| I <sub>PN</sub> | Primary nominal rms current                                                   |           |    |
|-----------------|-------------------------------------------------------------------------------|-----------|----|
|                 | @ $V_C = \pm 15V$ , $R_M \ge 0Ω$                                              | 50        | Α  |
|                 | @ $V_C = \pm 12V$ , $R_M \ge 0\Omega$ or $V_C = \pm 15V$ , $R_M \ge 16\Omega$ | 100       | Α  |
| $R_{M}$         | Measuring resistance V <sub>C</sub> =± 12V                                    | 0 200     | Ω  |
|                 | V <sub>C</sub> =± 15V                                                         | 16 400    | Ω  |
| I <sub>SN</sub> | Secondary nominal rms current                                                 | 25/50     | mA |
| KN              | Turns ratio                                                                   | 13 : 2000 |    |

### Accuracy - Dynamic performance data

|                        |                                                            | min.  | typ. | max. | Unit |
|------------------------|------------------------------------------------------------|-------|------|------|------|
| I <sub>P,max</sub>     | Max. measuring range                                       |       |      |      |      |
|                        | @ $V_C = \pm 12V$ , $R_M = 10\Omega$ ( $t_{max} = 10$ sec) | ±145  |      |      | Α    |
|                        | @ $V_C = \pm 15V$ , $R_M = 16\Omega$ ( $t_{max} = 10$ sec) | ±175  |      |      | Α    |
| X                      | Accuracy @ I <sub>PN</sub> , T <sub>A</sub> = 25°C         |       | 0.1  | 0.5  | %    |
|                        | Linearity                                                  |       |      | 0.1  | %    |
| $I_0$                  | Offset current @ I <sub>P</sub> =0, T <sub>A</sub> = 25°C  |       | 0.02 | 0.08 | mA   |
| t <sub>r</sub>         | Response time                                              |       | 500  |      | ns   |
| $\Delta t (I_{P,max})$ | Delay time at di/dt = 100 A/µs                             |       | 200  |      | ns   |
| f                      | Frequency bandwidth                                        | DC200 | )    |      | kHz  |

### **General data**

|                |                                                | mın.              | typ.          | max.           | Unit         |
|----------------|------------------------------------------------|-------------------|---------------|----------------|--------------|
| T <sub>A</sub> | Ambient operating temperature                  | -40               |               | +85            | °C           |
| Ts             | Ambient storage temperature (acc. M3101)       | -40               |               | +90            | °C           |
| m              | Mass                                           |                   | 13.5          |                | g            |
| $V_{C}$        | Supply voltage                                 | ±11.4             | ±12 or ±15    | ±15.75         | V            |
| lc             | Current consumption                            |                   | 18.5          |                | mA           |
|                | Constructed and manufactored and tested in     | accordance witl   | h EN 61800-5- | 1 (Pin 1 - 6 t | o Pin 7 – 9) |
|                | Reinforced insulation, Insulation material gro | up 1, Pollution d | legree 2      |                |              |
| Sclear         | clearance (component without solder pad)       | 10.2              |               |                | mm           |
| Screep         | creepage (component without solder pad)        | 10.2              |               |                | mm           |
| $V_{sys}$      | System voltage overvoltage category 3          |                   |               | 600            | $V_{RMS}$    |
| $V_{work}$     | Working voltage (table 7 acc. to EN61800       | -5-1)             |               | 1020           | $V_{RMS}$    |
| $U_{PD}$       | Rated discharge voltage                        |                   |               | 1400           | $V_{PEAK}$   |
|                |                                                |                   |               |                |              |
| Max. potent    | ial difference acc. to UL 508                  | RMS               |               | 600            | $V_{AC}$     |
|                |                                                |                   |               |                |              |

| Date     | Name | Isuue | Amend   | ment                                                                                                     |  |              |  |  |                        |  |
|----------|------|-------|---------|----------------------------------------------------------------------------------------------------------|--|--------------|--|--|------------------------|--|
| 21.01.19 | DJ   | 81    | Page 2: | ge 2: Marking changed from 4646X412 to 4646-X412. Page 3, Type test M3064 accurately defined. CN-19-018. |  |              |  |  |                        |  |
| 18.04.13 | KRe  | 81    | Mechan  | echanical outline: marking with UL-sign and max. potential difference added. CN-661                      |  |              |  |  |                        |  |
| 150      |      |       |         |                                                                                                          |  | MC-PM: NSch. |  |  | freig.: SB<br>released |  |

check

designer



Item no.: T60404-N4646-X412

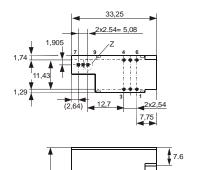
K-No.: 24618

### 50/100A Current Sensor

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit (electronic circuit)



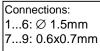
Date: 21.01.2019


Customer: Standard type

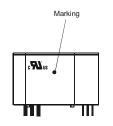
Customers Part no.:

Page 2 of 4

### Mechanical outline (mm):


### General tolerances DIN ISO 2768-c




0,65

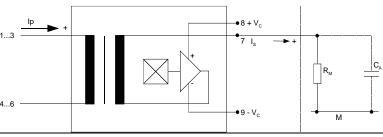
3x0.7x0.6










# Marking:

UL-sign 4646-X412 F DC



6xØ1,5

### Schematic diagram



### Possibilities of wiring for $V_C = \pm 15V$ (@ $T_A = 85^{\circ}C$ , $R_M = 25 \Omega$ )

| primary<br>windings<br><b>N</b> <sub>P</sub> |     | y current<br>maximal<br>Î <sub>P,max</sub> [A] | output current<br>RMS<br>I <sub>S</sub> (I <sub>P</sub> ) [mA] | turns ratio | primary<br>resistance<br>R <sub>P</sub> [mΩ] | wiring   |
|----------------------------------------------|-----|------------------------------------------------|----------------------------------------------------------------|-------------|----------------------------------------------|----------|
| 1                                            | 100 | 175                                            | 50                                                             | 1:2000      | 0.12                                         | 3<br>6 4 |
| 2                                            | 35  | 82                                             | 35                                                             | 2:2000      | 0.54                                         | 1 3 6 4  |
| 3                                            | 25  | 58                                             | 37.5                                                           | 3:2000      | 1.1                                          | 1 3 4 >  |

| Hrsg.: R&D-PD NPI D | Bearb:   | DJ | MC-PM: NSch. |  | freig.: SB |
|---------------------|----------|----|--------------|--|------------|
| editor              | designer |    | check        |  | released   |



Item no.: T60404-N4646-X412

K-No.: 24618 **50/100A Current Sensor** 

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit (electronic circuit)



Date: 21.01.2019

Customer: Standard type Customers Part no.: Page 3 of 4

### Electrical Data (investigate by a type checking)

|                         | min.                                                                                    | typ.  | max.  | Unit |
|-------------------------|-----------------------------------------------------------------------------------------|-------|-------|------|
| $V_{Ctot}$              | Maximum supply voltage (without function) ±15.75 to ±18 V: for 1s per hour              |       | ±18   | V    |
| Rs                      | Secondary coil resistance @ T <sub>A</sub> =85°C                                        |       | 145   | Ω    |
| $R_p$                   | Primary coil resistance per turn @ T <sub>A</sub> =25°C                                 |       | 0.36  | mΩ   |
| $X_{Ti}$                | Temperature drift of X @ T <sub>A</sub> = -40 +85°C                                     |       | 0.1   | %    |
| I <sub>0ges</sub>       | Offset current (including I <sub>0</sub> , I <sub>0t</sub> , I <sub>0T</sub> )          |       | 0.1   | mA   |
| l <sub>Ot</sub>         | Long term drift Offset current I <sub>0</sub>                                           | 0.03  |       | mA   |
| I <sub>OT</sub>         | Offset current temperature drift I <sub>0</sub> @ T <sub>A</sub> = -40+85°C             | 0.03  |       | mA   |
| I <sub>0H</sub>         | Hyteresis current @ I <sub>P</sub> =0 (caused by primary current 3 x I <sub>PN</sub> )  | 0.02  | 0.05  | mA   |
| $\Delta I_0/\Delta V_C$ | Supply voltage rejection ratio                                                          |       | 0.01  | mA/V |
| i <sub>oss</sub>        | Offsetripple (with 1MHz- filter first order)                                            |       | 0.15  | mA   |
| i <sub>oss</sub>        | Offsetripple (with 100kHz- filter first order)                                          | 0.017 | 0.025 | mA   |
| i <sub>oss</sub>        | Offsetripple (with 20kHz- filter first order)                                           | 0.005 | 0.007 | mA   |
| $C_k$                   | Maximum possible coupling capacity (primary – secondary)                                | 5     |       | pF   |
|                         | Mechanical Stress according to M3209/3<br>Settings: 10 – 2000 Hz, 1 min/Oktave, 2 hours |       | 10    | g    |

An exceptionally high rate of on/off – switching of the supply voltage accelerates the aging process of the sensor.

### <u>Inspection</u> (Measurement after temperature balance of the samples at room temperature; SC = significant characteristic)

| K <sub>N</sub> (SC) | (V) M3011/6 | Transformation ratio (I <sub>P</sub> =3*10A, 40-80 Hz) | 13 : 2000 | ) ± 0.5 %  |
|---------------------|-------------|--------------------------------------------------------|-----------|------------|
| $I_0$               | (V) M3226   | Offset current                                         | < 0.05    | mA         |
| $V_d$               | (V) M3014   | Test voltage, 1s                                       | 2.5       | $kV_{RMS}$ |
| V <sub>e</sub>      | (AQL 1/S4)  | Partial discharge voltage acc. M3024                   | 1500      | $V_{RMS}$  |
|                     |             | with V <sub>vor</sub>                                  | 1875      | $V_{RMS}$  |

### Type Testing (Precondition acc. to M3236)

| $V_W$          | HV transient test according to M3064 (1,2 μs / 50 μs-wave for 5 pulse → polarity +, 5 pulse → polarity - | 8    | kV           |                     |
|----------------|----------------------------------------------------------------------------------------------------------|------|--------------|---------------------|
| $V_d$          | Testing voltage acc. M3014                                                                               | (5s) | 5            | $kV_{RMS}$          |
| V <sub>e</sub> | Partial discharge voltage acc. M3024 with V <sub>vor</sub>                                               |      | 1500<br>1875 | $V_{RMS}$ $V_{RMS}$ |

| Hrsg.: R&D-PD NPI D | Bearb:   | DJ | MC-PM: NSch. |  | freig.: SB |
|---------------------|----------|----|--------------|--|------------|
| editor              | designer |    | check        |  | released   |



Item no.:

T60404-N4646-X412

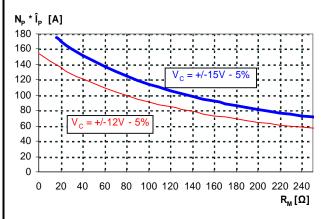
K-No.: 24618

### 50/100A Current Sensor

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit (electronic circuit)

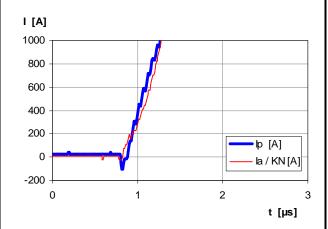


Date: 21.01.2019


Customer: Standard type

Customers Part no.:

Page 4 of 4


### Limit curve of measurable current ÎP(RM)

@ ambient temperature T<sub>A</sub> = 85 °C



# Maximum measuring range (µs-range)

Output current behaviour of a 3kA current pulse @  $V_C = \pm 15V$  und  $R_M = 25\Omega$ 



Fast increasing currents (higher than the specified  $I_{p,max}$ ), e.g. in case of a short circuit, can be transmitted because the currents are transformed directly.

The offset ripple can be reduced by an external low pass. Simplest solution is a passive low pass filter of 1st order with

$$f_g = \frac{1}{2\pi \cdot R_M \cdot C_a}$$

In this case the response time is enlarged.

It is calculated from:

$$t_r' \le t_r + 2.5 R_M C_a$$

#### **Applicable documents**

Temperature of the primary conductor should not exceed 105°C.

Current direction: A positive output current appears at point I<sub>S</sub>, by primary current in direction of the arrow.

Constructed and manufactored and tested in accordance with EN 61800.

Further standards UL 508 ; file E317483, category NMTR2 / NMTR8  $\,$ 

| Hrsg.: R&D-PD NPI D | Bearb:   | )J | MC-PM: NSch. |  | freig.: SB |
|---------------------|----------|----|--------------|--|------------|
| editor              | designer |    | check        |  | released   |