

MXD8642

SP4T Switch for 3G/4G Application

QC

11

This document contains information that is confidential and proprietary to Maxscend Microelectronics Company Limited (Maxscend) and may not be reproduced in any form without express written consent of Maxscend. No transfer or licensing of technology is implied by this document.

Page 1 of 7

General Description

The MXD8642 is a SOI SP4T switch suitable for LTE/UMTS/CDMA application. The MXD8642 features very low insertion loss, high isolation and excellent linearity performance down to 1.0V control voltage at high frequency up to 2.7GHz. In addition, this switch is able to handle high power signals up to 36dBm. The MXD8642 has internal ESD protection devices to achieve excellent ESD performances. No DC Blocking capacitors are required for all RF ports unless DC is biased externally. And the compact QFN-12L 1.8mm × 1.8mm × 0.55mm package is adopted.

Applications

- LTE, UMTS, CDMA application
- General Purpose Switching applications

Features

- Low voltage logic control:1.8V typical
- Low insertion loss:
 0.35dB @ 0.9GHz
 0.40dB @ 1.9GHz
 0.45dB @ 2.7GHz
- P0.1dB 36dBm
- Ultra small package,
 QFN-12L (1.8mm × 1.8mm × 0.55mm)

Functional Block Diagram and Pin Function

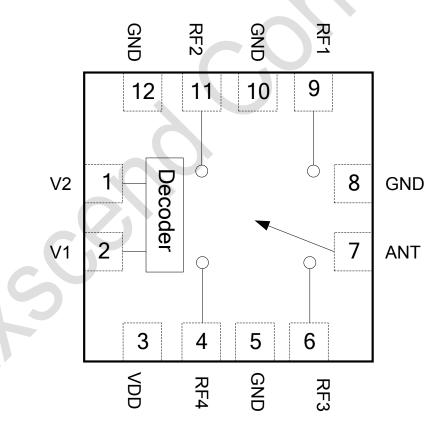
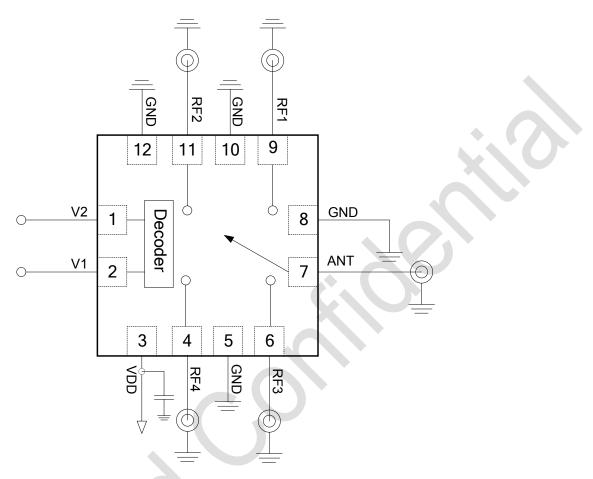



Figure 1 Functional Block Diagram and pin out

Application Circuit

Figure 2 MXD8642 Pin Diagram

Table 1. Pin Description

Pin No.	Name	Description	Pin No.	Name	Description
1	V2	Control Logic #2	7	ANT	RF signal in Antenna
2	V1	Control Logic #1	8	GND	RF and DC Ground
3	VDD	Power Supply	9	RF1	RF Input / Output
4	RF4	RF Input / Output	10	GND	RF and DC Ground
5	GND	RF and DC Ground	11	RF2	RF Input / Output
6	RF3	RF Input / Output	12	GND	RF and DC Ground

Table 2.Truth Table

V 1	V2	Path
Н	L	ANT-RF1
	Н	ANT-RF2
Н	Н	ANT-RF3
L	Ĺ	ANT-RF4

Absolute Maximum Ratings

Table 3. Maximum ratings

Parameters	Symbol	Minimum	Maximum	Units
Supply voltage	Vdd	+2.5	+3.0	V
Digital control voltage	V _{CTL}	0	+3.0	V
RF input power	PIN		+36	dBm
Operating temperature	TOP	-20	+85	°C
Storage temperature	T _{STG}	-55	+150	°C
Electrostatic Discharge Human body model (HBM), Class 1C	ESD_HBM		1000	\mathbf{S}
Machine Model (MM),	ESD_MM		100	V
Class A				
Charged device model (CDM), Class III	ESD_CDM		500	

Note: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

Recommended Operation Range

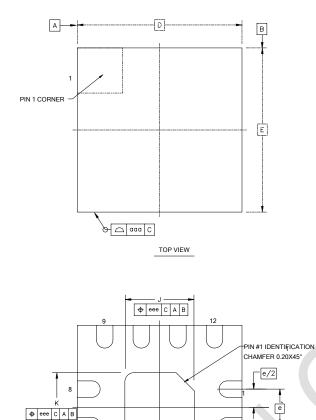
Table 4. Recommended operation condition

Parameters	Symbol	Min	Тур	Max	Units
Operation Frequency	f1	0.1	-	3.0	GHz
Power supply	V _{DD}	2.5	2.8	3.0	V
Supply current,	IDD	-	50	70	μA
Control voltage – High	Vctlh	1.0	1.8	Vdd	V
Control voltage – Low	V _{CTLL}	0	0	0.3	V
Control current - High	Ictlh			5	μA
Control current - Low	ICTLL			5	μA

Maxscend Microelectronics Company Limited. All rights reserved. Maxscend Confidential

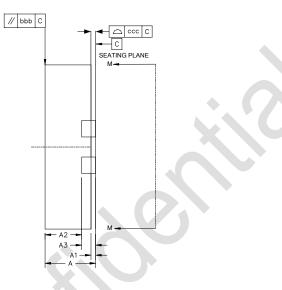
Specifications

Table 5. Electrical Specifications


Nominal conditions unless otherwise specified. V_{DD} = 2.8 V, V_1 & V_2 = 1.8V / 0V, Temp = 25°C, 50 Ω .

SCI

Denemeter	0	Specification			Test Oser lititar		
Parameter	Sym	Min.	Тур	Max.	Units	Test Condition	
Switching Time				•			
Start-up time	t _{start-up}	-	1	10	μs	50% V_{DD} to large signal fully compliant	
ON Switching speed	Ton	-	1	5	μs	50% control to 90% RF ON	
OFF Switching speed	T _{off}	-	1	5	μs	50% control to 90% RF ON	
Supply current	IDD	-	50	70	μA	Vdd= 2.8 V, Vctl = Vctl_h	
RF Specifications		<u>.</u>		<u> </u>	1		
Insertion loss 1/2/3/4	IL	-	0.35 0.40 0.45		dB dB dB	900 MHz 1900 MHz 2700 MHz	
Isolation 1/2/3/4	ISO	35 30 25	40 35 28	-	dB dB dB	900 MHz 1900 MHz 2700 MHz	
Pin at 0.1dB compression point	P _{0.1dB}	-	+36	-	dBm	0.7 GHz to 3 GHz	
2 nd Harmonic	2f0	-	-80	-70	dBc	900MHz, +34dBm	
3rd Harmonic	3f0	-	-75	-70	dBc	900MHz, +34dBm	
3rd intercept point1 3rd intercept point2	IIP3(1) IIP3(2)	+65 +63	+70 +65	-	dBm	829+849 MHz , Pin = +24dBm 1870+1910 MHz , Pin = +24dBm	



Package Outline Dimension

7

BOTTOM VIEW VIEW M-M

REGORIDITION	SYMBOL	MILLIMETER				
DESCRIPTION	STIVIDOL	MIN	NOM	MAX		
TOTAL THICKNESS	A	0.50	0.55	0.60		
STAND OFF	A1	0		0.05		
MOLD THICKNESS		A2	0.35	0.40	0.45	
L/F THICKNESS		A3	0.152 REF			
LEAD WIDTH	b	0.13	0.18	0.23		
BODY SIZE	X	D	1.70	1.80	1.90	
BODY SIZE	Y	E	1.70	1.80	1.90	
LEAD PITCH	LEAD PITCH			0.40 BSC		
FP SIZE	х	J	0.71	0.76	0.81	
EP SIZE	Y	к	0.71	0.76	0.81	
LEAD LENGTH	L	0.20	0.25	0.30		
PACKAGE EDGE TOLEF	ааа	0.100				
MOLD FLATNESS	bbb	0.100				
COPLANARITY	ccc	0.080				
LEAD OFFSET	ddd	0.100				
EXPOSED PAD OFFSET	eee	0.100				

Figure 3 Package outline dimension

12XL

EXPOSED DIE ATTACH PAD

Reflow Chart

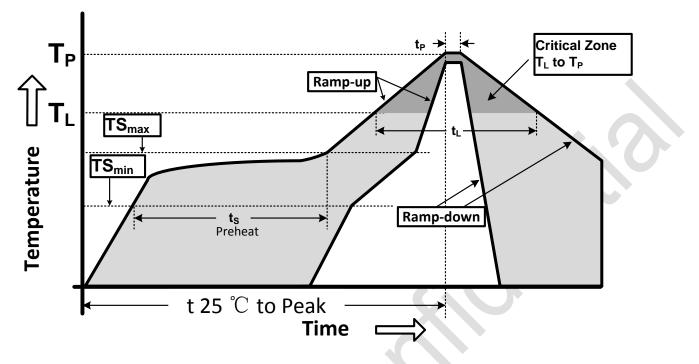


Figure 4 Recommended Lead-Free Reflow Profile

Table 6. Reflow condition

Profile Parameter	Lead-Free Assembly,Convection,IR/Convection
Ramp-up rate (TS _{max} to T _p)	3°C/second max.
Preheat temperature (TSmin to TSmax)	150℃ to 200℃
Preheat time (t _s)	60 - 180 seconds
Time above TL , 217°C (t _L)	60 - 150 seconds
Peak temperature (T _p)	260 ℃
Time within 5 $^{\circ}$ C of peak temperature(t _P)	20 - 40 seconds
Ramp-down rate	6℃/second max.
Time 25°C to peak temperature	8 minutes max.

ESD Sensitivity

Integrated circuits are ESD sensitive and can be damaged by static electric charge. Proper ESD protection techniques should be used when handling these devices.

RoHS Compliant

This product does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE), and are considered RoHS compliant.