MT6511 High Precision CC/CV

AEROSEMI MT6511

Primary-Side Conteoller

FEATURES

• 5% Constant Voltage Regulation, 5% Constant

Current Regulation at Universal AC input

• Primary-side Sensing and Regulation Without

TL431 and Opto-coupler

- Programmable CV and CC Regulation
- Adjustable Constant Current and Output Power

Setting

• Built-in Secondary Constant Current Control with Primary Side Feedback

- Built-in Adaptive Current Peak Regulation
- Built-in Primary winding inductance compensation
- Programmable Cable drop Compensation
- Power on Soft-start
- Built-in Leading Edge Blanking (LEB)
- Cycle-by-Cycle Current Limiting
- VIN Under Voltage Lockout with Hysteresis(UVLO)
- VIN OVP
- VIN Clamp

APPLICATIONS

Low Power AC/DC offline SMPS for

- Cell Phone Charger
- Digital Cameras Charger
- Small Power Adapter
- Auxiliary Power for PC, TV etc.
- Linear Regulator/RCC Replacement

GENERAL DESCRIPTION

MT6511 is a high performance offline PWM Power switch for low power AC/DC charger and adapter applications. It operates in primary-side sensing and regulation. Consequently, opto-coupler and TL431 could be eliminated. Proprietary Constant Voltage (CV) and Constant Current (CC) control is integrated as shown in the figure below.

In CC control, the current and output power setting can be adjusted externally by the sense resistor Rs at ISEN pin. In CV control, multi-mode operations are utilized to achieve high performance and high efficiency. Inaddition, good load regulation is achieved by the built-in cable drop compensation. Device operates in PFM in CC mode as well at large load condition and it operates in PWM with frequency reduction at light/medium load.

MT6511 offers power on soft start control and protection coverage with auto-recovery features including Cycle-by-Cycle current limiting, VIN OVP, VIN clamp and UVLO. Excellent EMI performance is achieved with frequency shuffling technique.

High precision constant voltage (CV) and constant current (CC) can be achieved by MT6511.

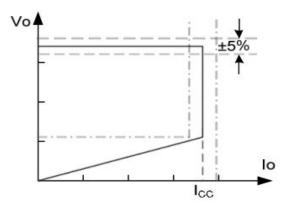
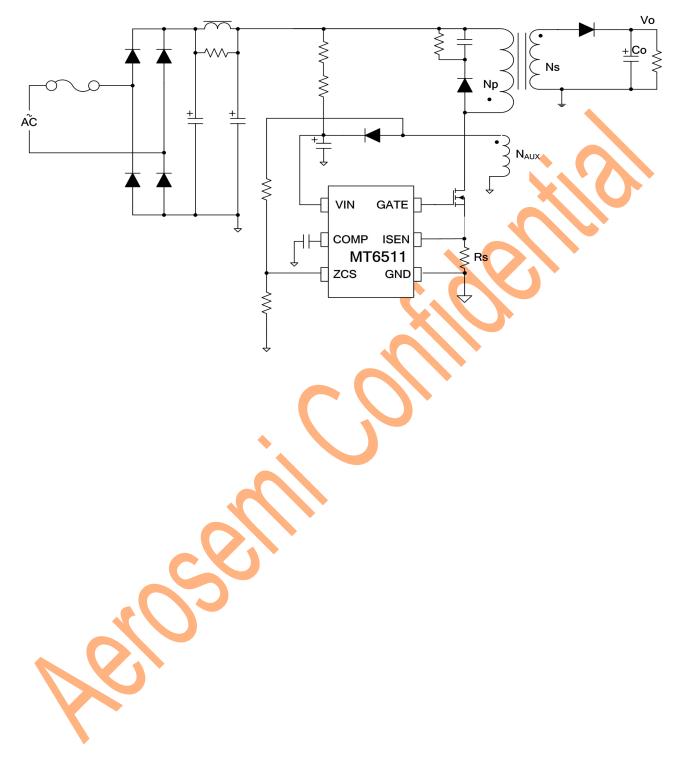
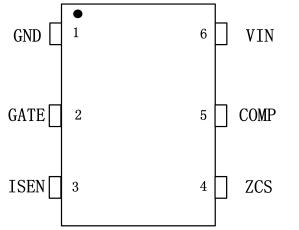



Fig.1. Typical CC/CV Curve

MT6511 V1.1

TYPICAL APPLICATION



AEROSEMI

GENERAL INFORMATION

Pin Configuration

The pin map is shown as below for SOT23-6

Ordering Information

Part Number	Description			
MT6511CP	SOT23-6,Pb-free,Tube			
MT6511CPA	SOT23-6,Pb-free,T&R			

Package Dissipation Rating

Package	RθJA (° ୯/ W)
SOT23-6	200
NOTE: Drain Pin Connected	100mm ² PCB
copper clad.	

Parameter	Value			
Drain Voltage (off state)	-0.3V to Bvdss			
VIN Zener Clamp Continuous Current	10 mA			
COMP Voltage	-0.3 to 7V			
ISEN Input Voltage	-0.3 to 7V			
ZCS Input Voltage	-0.3 to 7V			
Min/Max Operating	-20 to 150°C			
Min/Max Storage	-55 to 150°C			
Temperature T _{stg}	-05 to 150 C			
Lead Temperature (Soldering,10secs)	260°C			

Note: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

TERMINAL ASSIGNMENTS

Pin Num	Pin Name	I/O	Description
1	GND	Р	Ground
2	GATE	0	Gate driver output for power MOSFET
3	ISEN		Current Sense
4	zcs	3	The voltage feedback from auxiliary winding. Connected to resistor divider From auxiliary winding reflecting output voltage. PWM duty cycle is determined by EA output and current sense signal at pin4.
5	COMP	I	Loop Compensation for CV Stability
6	VIN	Р	Power Supply

AEROSEMI

BLOCK DIAGRAM

MT6511 V1.1

ELECTRICAL CHARACTERISTICS

(T_A= 25^oC, VIN=16V, if not otherwise noted)

Symbol	Parameter 1	Fest (Conditions	Min	Тур	Max	Unit
Supply Volta	age(VIN) Section						
I _{DD ST}	Stand by Current	VIN=13V			5	20	uA
DD_op		Operation supply current ZCS=2V,ISEN=0V,VIN=20V		-	2	3	mA
UVLO(OFF)	VIN Under Voltage Lock out Enter	VIN falling		8	9	10	V
UVLO(ON)	VIN Under Voltage Lockout Exit	VIN rising		13.5	14.8	16.0	V
OVP	Over voltage protection Threshold	Ramp VIN until gate shutdown		26	27.5	29	V
Current Sen	se Input Section						
TLEB	LEB time				625		ns
Vth_oc	Over current threshold	XII		880	910	940	mV
Td_oc	OCP Propagation delay				150		ns
ZSENSE_IN	Input Impedance			50			Kohm
T_ss	Soft start time				17		ms
Frequency S			N				
Freq_Max ^{Note}	¹ IC Maximum frequency			55	60	65	KHz
Freq_Nom	System Nominal switch frequency				50		KHz
Freq_startup	Freq_startup		ZCS=0V,Comp=5V		14		KHz
\triangle f/Freq	Frequency shuffling range				±4		%
Error Amplif	ier section						
Vref_EA	Reference voltage for EA			1.97	2	2.03	V
Gain	DC gain of EA				60		dB
I_COMP_MAX Max. Cable compensation c		current ZCS=2V,Comp=0V			37.5		uA
Power MOSF	ET Section						
V_clamp	Output clamp voltage				16		V
Tr	Output rising time	CL=0.5nF			650		ns
Tf	Output falling time	CL=0.5nF			40		ns

Note:

1. Freq_Max indicates IC internal maximum clock frequency. In system application, the maximum operation frequency of 60Khz nominal occurs at maximum output power or the transition point from CV to CC.

OPERATIONDESCRIPTION

MT6511 is a cost effective PWM power switch optimized for off-line low power AC/DC applications including battery chargers and adapters. It operates in primary side sensing and regulation, thus opto-coupler and TL431 are not required. Proprietary built-in CV and CC control can achieve high precision CC/CV control meeting most adapter and charger application requirements.

Start up current and Start up control

Start up current of MT6511 is designed to be very Low so that VIN could be charged up above UVLO threshold and starts up quickly. A large value start-up resistor can therefore be used to minimize the power loss in application.

Operating Current

The Operating current of MT6511 is as low as2.5mA. Good efficiency is achieved with the low operating current together with 'Muti-mode' control features.

Soft Start

MT6511 features an internal soft start to minimize the component electrical over-stress during power on start-up. As soon as VIN reaches UVLO (ON), the control algorithm will ramp peak current voltage threshold gradually from nearly zero to normal setting of 0.90V. Every restart is a soft start.

CC/CV Operation

MT6511 is designed to produce good CC/CV control characteristic as shown in the Fig.1.In charger applications, a discharged battery charging starts in the CC portion of the curve until it is nearly full charged and smoothly switches to operate in CV portion of the curve. In an AC/DC adapter, the normal operation occurs only on the CV portion of the curve. The CC portion provides output current limiting. In CV operation, the output voltage is regulated through the primary side control. In CC operation mode, MT6511 will regulate the output current constant regardless of the output voltage drop.

Principle of Operation

To support MT6511 proprietary CC/CV control, system needs to be designed in DCM mode for fly-back system (Refer to Typical Application Diagram on page1).

In the DCM fly-back converter, the output voltage can be sensed via the auxiliary winding. During MOSFET turn-on time, the load current is supplied from the output filter capacitor Co. The current in the primary winding ramps up. When MOSFET turns off, the primary current transfers to the secondary at the amplitude of

$$I_{S} = \frac{N_{P}}{N_{S}} \times I_{P} \qquad (1)$$

The auxiliary voltage reflects the output voltage as shown in Figure.2 and it is given by

$$V_{AUX} = \frac{N_{AUX}}{N_s} \times (V_0 + \Delta V)$$
 (2)

Where ΔV indicates the drop voltage of the output Diode.

MT6511 V1.1

www.aerosemi.com Aerosemi Proprietary Information.Unauthorized Photocopy and Duplication Prohibited.

All Rights Reserved.

MT6511 High Precision CC/CV Primary-Side Controller

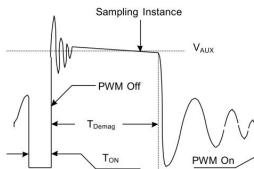


Figure.2.Auxiliary voltage waveform

Via a resistor divider connected between the auxiliary winding and ZCS (pin 3), the auxiliary voltage is sampled at the end of the demagnetization and it is hold until the next sampling. The sampled voltage is compared with Vref (2.0V) and the error is amplified. The error amplifier output COMP reflects the load condition and controls the PWM switching frequency to regulate the output voltage, thus constant output voltage can be achieved.

When sampled voltage is below Vref and the error amplifier output COMP reaches its maximum, the switching frequency is controlled by the sampled voltage thus the output voltage to regulate the output current, thus the constant output current can be achieved.

Adjustable CC point and Output Power

In MT6511, the CC point and maximum output power can be externally adjusted by external current sense resistor Rs at ISEN pin as illustrated in Typical Application Diagram. The output power is adjusted through CC point change. The larger Rs, the smaller CC point is, and the smaller output power becomes, and vice versa as shown in Fig.3

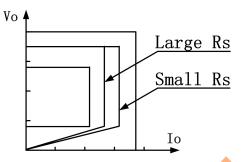


Figure.3. Adjustable output power by changing Rs

Operation switching frequency

The switching frequency of MT6511 is adaptively controlled according to the load conditions and the operation modes. No external frequency setting components are required. The operation switching frequency at maximum output power is set to 60KHz internally.

For fly-back operating in DCM, The maximum Output power is given by

$$P_{MAX} = \frac{1}{2} \times L_{P} \times F_{SW} \times \overset{p}{\downarrow} (3)$$

Where Lp indicate the inductance of primary winding and Ip is the peak current of primary winding. Refer to the equation 3, the change of the primary winding inductance results in the change of the maximum output power and the constant output current in CC mode. To compensate the change from variations of primary winding inductance, the switching frequency is locked by an internal loop such that the switching frequency is

$$F_{SW} = \frac{1}{2T_{Demag}}$$
(4)

Since T_{Demag} is inversely proportional to the inductance, as a result, the product Lp and fsw is constant, thus the maximum output power and constant current in CC mode will not change as primary winding inductance changes. Up to

www.aerosemi.com

Aerosemi Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.

AEROSEMI

MT6511 High Precision CC/CV Primary-Side Controller

 $\pm 10\%$ variation of the primary winding inductance can be compensated.

Frequency shuffling for EMI improvement

The frequency shuffling (switching frequency modulation) is implemented in MT6511.The oscillation frequency is modulated so that the tone energy is spread out. The spread spectrum minimizes the conduction band EMI and therefore eases the system design.

Current Sensing and Leading Edge Blanking

Cycle-by-Cycle current limiting is offered in MT6511 current mode PWM control. The switch current is detected by a sense resistor into the ISEN pin. An internal leading edge blanking circuit chops off the sensed voltage spike at initial internal power MOSFET on state so that the external RC filtering on sense input is no longer needed. The PWM duty cycle is determined by the current sense input voltage and the EA output voltage.

Gate Drive

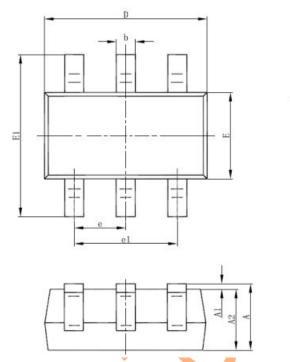
The internal power MOSFET in MT6511 is driven by a dedicated gate driver for power switch control. Too weak the gate drive strength results in higher conduction and switch loss of MOSFET while too strong gate drive compromises EMI.

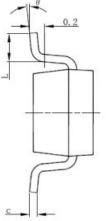
A good trade-off is achieved through the built-in

totem pole gate design with right output strength control.

Programmable Cable drop Compensation

MT6511, cable drop compensation In is implemented to achieve good load regulation. An offset voltage is generated at ZCS by an internal current flowing into the resister divider. The current is inversely proportional to the voltage across pin COMP, as a result, it is inversely proportional to the output load current, thus the drop due to the cable loss can be compensated. As the load current decreases from full-load to no-load, the offset voltage at ZCS will increase. It can also be programmed by adjusting the resistance of the divider to compensate the drop for various cable lines used.


Protection Control


Good power supply system reliability is achieved with its rich protection features including Cycleby-Cycle current limiting (OCP), VIN clamp, Power on Soft Start, and Under Voltage Lockout on VIN (UVLO).

VIN is supplied by transformer auxiliary winding output. The output of MT6511 is shut down when VIN drops below UVLO (OFF) limit and Switcher enters power on start-up sequence thereafter.

PACKAGE MECHANICAL DATA

SOT23-6L PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensi	ons In Millimeters	Dimensions In Inches		
	Min	Мах	Min	Мах	
А	1.000	1.450	0.039	0.057	
A1	0.000	0.150	0.000	0.006	
A2	0.900	1.300	0.035	0.051	
b	0.300	0.500	0.012	0.020	
С	0.080	0.220	0.003	0.009	
D	2.800	3.020	0.110	0.119	
E	1.500	1.726	0.059	0.068	
E1	2.600	3.000	0.102	0.118	
е	0.950	(BSC)	0.037	(BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	