BB Black 扩展板 用户手册

版权声明

本手册所有权由深圳市微雪电子有限公司独家持有。未经本公司的书 面许可,不得以任何方式或形式进行修改、分发或复制本文档的任何 部分,否则一切后果由违者自负。

目录

BB Black	扩展板	用户手册	. 1
版权	2声明…		. 1
1	准备工	作	. 2
	1.1	TF 卡系统镜像的烧写	. 2
	1.2	电脑端部署通信环境	. 3
	1.3	进入 Bash Shell 环境	.4
	1.4	API 源码	. 5
2	LCD CA	PE	. 6
	2.1	LCD CAPE 产品概述	. 6
	2.2	LCD CAPE 使用说明	. 8
3	MISC CAPE		
	3.1	MISC CAPE 产品概述	11
	3.2	LED 测试	12
	3.3	蜂鸣器测试	12
	3.4	DS18B20 测试	12
	3.5	按键测试	13
	3.6	RTC 测试	13
4	RS485	CAN CAPE	15
	4.1	CAN 测试	15
	4.2	RS485 测试	16
5	其他套	件	18
	5.1	USB Camera 测试	18
	5.2	USB WIFI 测试	20

1 准备工作

1.1 TF 卡系统镜像的烧写

烧写我们提供的基于 TF 卡启动的 Angstrom 镜像。操作如下:

 解压系统镜像: 使用 7z920.exe 压缩工具解压相应的镜像文件 XXX.img.7z。
 注意: "XXX"是泛指各种镜像文件名称,用户根据自己的扩展板模块选择相应的系统镜像,点击下面链接下载:

LCD CPAE(4.3inch)测试镜像:

http://www.waveshare.net/wiki/LCD-CAPE-4.3inch-IMG

LCD CPAE(7inch)测试镜像:

http://www.waveshare.net/wiki/LCD-CAPE-7inch-IMG

MISC CAPE 和 RS485/CAN CAPE 测试镜像: <u>http://www.waveshare.net/wiki/MISC-CAPE-IMG</u> 说明: MISC CAPE 和 RS485/CAN CAPE 共用一个镜像文件。

2) 使用 HPUSBDisk.exe 格式化 TF 卡。选择要格式化的 TF 卡,选择格式化为 FAT32, 点击 Start。

注意: 必须确保 TF 卡的容量不低于 4GB!

File syste	m		
FAT32			
/olume la	ibel		
BEAGLE	_BONE		
Qui Ena Cre usi	ck Format ble Compression ate a DOS startup o ng system files loca	lisk ted at:	

图 1. 使用 HPUSBDisk.exe 格式化 TF 卡

3) 烧写系统镜像

打开 Win32DiskImager.exe,选择1)解压出来的系统镜像,点击 Write进行烧写。

烧写完毕,取下 TF 卡。

😼 Win32 Disk Imager 📃 🗖	• ×
- Image File	-Device -
libc-ipk-v2012.12-beaglebone-2013.05.24-waveshare.img 📄	[K:\] 🔻
Copy MD5 Hash:	
Progress	
Version: 0.8 Cancel Read Write	Exit

图 2. 使用 Win32DiskImager.exe 烧写系统镜像

1.2 电脑端部署通信环境

1) 通过 USB 转 TTL 线(内置 PL2303 芯片,兼容 Windows 8 系统),把 BB Black 的 DEBUG 接口连接到计算机。

图 3. USB 转 TTL 线

- 2) 打开 PL2303_Prolific_DriverInstaller_v1.8.0.exe 进行驱动的安装。
- 3) 成功安装驱动后,打开串口查看软件 PuTTY.exe,对下图红框位置进行设置。

🖃 Session	Basic options for your	PuTTY session
- Logging - Terminal - Keyboard - Bell - Features	Specify the destination you war Serial line COM3 Connection type:	to connect to Speed 115200
- Appearance - Behaviour - Translation - Selection - Colours - Connection - Data - Proxy - Telnet - Rlogin - Selu	Load, save or delete a stored s Saved Sessions COM3 Default Settings 192.168.1.200 COM3 COM4 COM5	Load Save Delete
SSH	Close window on exit: ◎ Always ◎ Never ◎	Only on clean exit

图 4. PuTTY 界面

说明:

- Serial line: 选择对应的串口。图中所示是 COM3,但用户应按照实际设置。
 (通过设备管理器可以查看)
- Speed: 设置波特率为 115200。
- Connection type: 设置为 Serial。
- 4) 点击 Open。

1.3 进入 Bash Shell 环境

- 1) 把烧写好镜像的 TF 卡插入 BB Black 的卡槽中,按住 BOOT 按钮,然后上电(上 电后可以松开 BOOT 按钮)。
- 2) 当系统启动后,输入"root",即可进入 Bash Shell 环境,可以输入 shell 命令。 后面提到的操作命令都是在此终端进行。

图 5. 进入 Bash Shell

1.4 API 源码

本手册用到的 API 源码在系统镜像/home/xuser/waveshare_demo/API 目录下。

2 LCD CAPE

2.1 LCD CAPE 产品概述

本产品主要用于给 Beaglebone Black (BB Black) 扩展我司提供的 4.3 寸和 7 寸电阻屏。 所有功能均是针对 BB Black 开发板所推出的,它本身不能单独使用。分为两个版本,分 别对应 4.3 寸和 7 寸电阻屏。

LCD CAPE (4.3inch)板载资源

- 1. BB_BLACK 接口: 方便接入 BB_BLACK
- 2. 4.3inch 屏接口: 方便接入 4.3 寸电阻屏
- 3. DEBUG 接口: BB_BLACK 的调试接口,方便用户外接不同的串口模块
- 4. 启动选择按键: 方便用户从 TF 卡启动

LCD CAPE (7inch)板载资源

- 1. BB_BLACK 接口: 方便接入 BB_BLACK
- 2. 4.3inch 屏接口: 方便接入 4.3 寸电阻屏
- 3. DEBUG 接口: BB_BLACK 的调试接口,方便用户外接不同的串口模块
- 4. 启动选择按键: 方便用户从 TF 卡启动

2.2 LCD CAPE 使用说明

1) 连接屏幕。

注意:本产品用于连接 4.3 寸屏或 7 寸屏的时候,使用的接口是不同的。本产 品部分批次同时提供了两种接口,如果用户把屏幕接到错误的接口,将会损 坏主板和屏幕。请务必注意区分!

LCD CAPE (4.3inch)和 LCD CAPE (7inch)两者的区分点在于 FFC 排线的接口。

图 6. 左边 LCD CAPE (4.3inch),右边 LCD CAPE (7inch)

● 4.3 寸屏连接

系统断电,把 4.3 寸屏接到 LCD4.3 接口,如图 7.所示: 确保烧录的是 LCD CPAE(4.3inch)测试镜像(参见 1.1)。BB Black 的 P1 电源 座接入电源适配器。

图 7. 连接 4.3 寸屏

● 7 寸屏显示测试 系统断电,把 7 寸屏接到 LCD7 接口,如图 8 所示: 确保烧录的是 LCD CPAE(7inch)测试镜像(参见 1.1), BB Black 的 P1 电源 座接入电源适配器。

图 8. 连接 7 寸屏

2) 触摸屏校准,输入命令:

Angstrom 系统: root@beaglebone:~# rm -rf /etc/pointercal*

root@beaglebone:~# ts_calibrate

运行该命令后,LCD 屏上提示 5 点校准,分别点击各点完成校准。

root@beaglebone:~# <mark>sync</mark>

直接开关电源或者终端执行 reboot 命令重启系统,用户触摸屏幕,有反馈则 正常。

注意:如果存在触摸不准的情况,则再次进行校准或重启系统。

Debian 系统:

root@beaglebone:~# <mark>rm -rf /etc/pointercal*</mark>

root@beaglebone:~# <mark>sync</mark>

重新启动系统,校准程序会自动启动,校准后即可正常使用触摸功能。

3 MISC CAPE

3.1 MISC CAPE 产品概述

[核心接口简介]

- BB_BLACK 接口 方便接入 BB_BLACK
- DEBUG 接口
 BB_BLACK 的调试接口,方便用户外接
 不同的串口模块
- ONE-WIRE 接口
 方便接入各类 1-WIRE 接口器件(TO-92 封装),
 如温度传感器 DS18B20、电子注册码
 DS2401 模块等

[器件介绍]

- 4. 启动选择按键
 - 方便用户从 TF 卡启动
- 5. 用户按键
 4 个用户按键
- 6. 蜂鸣器

- 7. 电源 LED
- 8. 用户 LED
 4 个用户 LED
- 9. **电位器** AD 可调电位器
- 10. **32.768KHZ 晶振** PCF8563 使用晶振
- 11. PCF8563 RTC 实时时钟芯片
- 12. RTC 后备电池座 可接入 3.3V 电池

[跳线说明]

- 13. RTC 电源选择跳线
- 14. RTC 的 I2C 选择跳线 可以选择接入 I2C1 或者 I2C2

3.2 LED 测试

在终端输入: root@beaglebone:~# test_led 可以看到 4 个 LED 作循环的流动,按键盘 Ctrl+C 结束实验。

3.3 蜂鸣器测试

1) 在终端输入:

root@beaglebone:~# ls /sys/devices/ocp.3/

可以看到 pwm_ehrpwm1b.14 文件,如下图所示:

PuTTY					
root@beaglebone:/mnt/nfs/waveshare demo/API/pwm test# ls /sys/devi ^					
ces/ocp.3/					
44e07000.gpio	4804c000.gpio	gpio-leds.8			
44e09000.serial	4819c000.i2c	mmc.11			
44e0b000.i2c	481a0000.spi	mmc.5			
44e0d000.tscadc	481ac000.gpio	modalias			
44e10448.bandgap	481ae000.gpio	nop-phy.6			
44e35000.wdt	481d0000.d_can	nop-phy.7			
44e3e000.rtc	48200000.interrupt-controller	onewire@0.16			
47400000.usb	48302000.epwmss	panel.13			
48024000.serial	4830e000.fb	power			
4802a000.i2c	4900000.edma	pwm_ehrpwm1b.14			
48042000.timer	4a100000.ethernet	rstctl.4			
48044000.timer	53100000.sham	subsystem			
48046000.timer	53500000.aes	uevent			
48048000.timer	backlight.12				
4804a000.timer	bt_gpio_key.15				
root@beaglebone:/mnt/nfs/waveshare_demo/API/pwm_test# []					

图 9. 查看到 pwm_ehrpwm1b.14 文件

2) 由于 pwm_ehrpwm1b.14 的扩展名是.14,在执行蜂鸣器测试命令的时候,需要 加入参数 14:

root@beaglebone:~# test_pwm 14 蜂鸣器会发出不同频率的响声。

3.4 DS18B20 测试

- 插上 DS18B20 到 ONE-WIRE 接口,在终端上输入: root@beaglebone:~#ls /sys/bus/w1/devices/ 可以看到 28-00000 57c5948(每个 DS18B20 的后 7位数不同,以你自己的为准, 比如我这里的后 7 位是 57c5948,记下这串数字)
- 在终端上输入:
 root@beaglebone:~#test_ds18b20 57c5948
 其中 57c5948 这串数字需要更改为之前记下那一串数字。
 终端上会把当前环境的温度打印出来。

3.5 按键测试

1) 在终端上输入:

root@beaglebone:~# <mark>test_key event2</mark>

说明:

设备文件"event2"是根据用户所接入的中断设备有关,不一定是"event2",可以进行查询,在终端上输入以下命令查看:

root@beaglebone:~# <mark>ls /dev/input</mark>

Putty				
root@beaglebone	e:~# ls /d	dev/input	/	*
by-id event) event2	mouse0	touchscreen0	
by-path event	l mi <u>c</u> e	mouse1	touchscreen1	
root@beaglebon@	∋:~#			
				E
				T

图 10. 查看中断设备

2) 分别按下各按键,终端上会显示所按下或松开的按键,按键盘 Ctrl+C 结束实验。 注意:

进行按键测试时,如果外接显示器,屏幕会有被触摸的反应(不清楚是什么样的反映),这是正常现象。

3.6 RTC 测试

确保使用纽扣电池(短接帽跳接到 BAT),在终端上输入相应命令:

- 1) 读取系统时间: root@beaglebone:~# date
- 2) 设置系统时间: root@beaglebone:~# date 020809302014.23
- 3) 设置 RTC 时钟模块的硬件时间: root@beaglebone:~# hwclock -w -f /dev/rtc1
- 4) 读取 RTC 时钟模块的硬件时间:
 root@beaglebone:~# hwclock -r -f /dev/rtc1
- 5) RTC 时钟模块的硬件时间同步到系统时间: root@beaglebone:~# hwclock -s -f /dev/rtc1

Putty	
<pre>root@beaglebone:~# date Tue Jan 15 16:20:56 UTC 2013 root@beaglebone:~# date 020809302014.23 Sat Feb 8 09:30:23 UTC 2014 root@beaglebone:~# hwclock -w -f /dev/rtc1 root@beaglebone:~# hwclock -r -f /dev/rtc1 Sat Feb 8 09:30:52 2014 0.000000 seconds root@beaglebone:~# hwclock -s -f /dev/rtc1 root@beaglebone:~# root@beaglebone:~#</pre>	

6) 断电重启,读取 RTC 的硬件时间,并同步到系统时间,输入命令:

root@beaglebone:~# <mark>hwclock –r –f /dev/rtc1</mark>
root@beaglebone:~# <mark>hwclock -s -f /dev/rtc1</mark>
root@beaglebone:~# <mark>date</mark>

图 12. RTC 正常运界面

此时,软、硬件时间已经同步,RTC 正常工作。

4 RS485 CAN CAPE

4.1 CAN 测试

BB Black 可以作为一个 CAN 设备使用,测试时连接两块 RS485/CAN CAPE 扩展 板,跳线帽选择 UART1 (RXD1、TXD1),并分别连接 CAN 模块的 H、L 到另一 模块的 H、L 端。用户也可以使用自己的 CAN 设备进行测试。 打开两个终端,分别输入相应命令:

- 1) 设置波特率: root@beaglebone:~#canconfig can0 bitrate 115200 ctrlmode triple-sampling on
- 使能 CAN 设备:
 root@beaglebone:~# canconfig can0 start 两个 CAN 设备分别作为接收端和发送端,接收端应先处于接收状态,然后发 送端再发送。
- 3) 接收端:

root@beaglebone:~<mark># candump can0</mark>

接收端接收的结果如下:

图 13. CAN 接收端状态

4) 发送端:

root@beaglebone:~# cansend can0 -i 0x11 0x12 0x13 0x14 发送端发送的结果如下:

🛃 COM3 - PuTTY 📃 🗖 🗖 💌
root@beaglebone:~# canconfig can0 bitrate 115200 ctrlmode triple-sampling on A
can0 bitrate: 115384, sample-point: 0.750
can0 ctrlmode: loopback[OFF], listen-only[OFF], tripple-sampling[ON], one-sho
t[OFF], berr-reporting[OFF]
root@beaglebone:~# canconfig can0 start
can0 state: ERROR-ACTIVE
root@beaglebone:~# cansend can0 -i 0x11 0x12 0x13 0x14
interface = $can0$, family = 29, type = 3, proto = 1
root@beaglebone:~#
root@beaglebone:~# cansend can0 -i 0x11 0x12 0x13 0x14
interface = can0, family = 29, type = 3, proto = 1
root@beaglebone:~# cansend can0 -i 0x11 0x12 0x13 0x14
interface = can0, family = 29, type = 3, proto = 1
root@beaglebone:~# cansend can0 -i 0x11 0x12 0x13 0x14
interface = can0, family = 29, type = 3, proto = 1
root@beaglebone:~# canconfig can0 stop
can0 state: STOPPED
root@beaglebone:~# [808.506587] tilcdc 4830e000.fb: timeout waiting for fr
amedone
root@beaglebone:~#
root@beaglebone:~#

图 14. CAN 发送端状态

5) 关闭设备:

root@beaglebone:~# <mark>canconfig can0 stop</mark>

4.2 RS485 测试

BB Black 可以作为一个 RS485 设备使用,测试时连接两块 RS485/CAN CAPE 扩展板,跳线帽选择 UART2 (RXD2、TXD2),并分别连接 RS485 模块的 A、B 端 到另一模块的 A、B 端。用户也可以使用自己的 RS485 设备进行测试的。 打开两个终端,两个 RS485 设备分别作为接收端和发送端。

1) 使接收端应先处于接收状态,输入命令:

root@beaglebone:~# test_485 -d /dev/ttyO2 -b 115200

出现 3 个选项,终端中输入数字选择即可,接收端选择"2"。在选择"3"停止接 收前,接收端一直处于接收状态,如下所示:

```
🛃 192.168.7.2 - PuTTY
root@beaglebone:~# ls
 Desktop
 Select 1 : Send a message
Select 2 : Receive messages
 >2
Select 3 : Stop Receive
          1 num = 3 recv = abc
2 num = 3 recv = abc
3 num = 3 recv = abc
4 num = 3 recv = abc
5 num = 3 recv = abc
6 num = 3 recv = abc
sum =
sum =
sum =
 sum =
sum =
sum =
 Select 1 : Send a message
Select 2 : Receive message
           : Receive messages
 Select
```


2) 发送端选择"1",输入要发送的信息,如"abc",在选择"3"停止发送之前发送端 一直处于循环发送状态,发送端可以一直发送数据,如下所示:

图 16. RS485 发送端状态

3) 按下 Ctrl+C 结束实验。

5 其他套件

5.1 USB Camera 测试

- 1) 将标配的 USB Camera 插入 BB Black 的 USB Host 接口,并插入网线。
- 2) 终端输入以下命令,查看分配到的 ip 地址:

图 17. 查看分配到的地址

可以看到 ip 地址为 192.168.1.143,记下这个 ip。(这个 ip 不是固定的,用户 应根据查看的 ip 进行之后的操作)。

3) 启动视频流服务器: root@beaglebone:~# cd/home/xuser/waveshare_demo/API/camera_test/mjpg-streamer root@beaglebone:~#./ start.sh

B COM3 - PuTTY	
TODO mjpg_streamer.c output_udp.so utils.h	
t.sh beaglebone:/home/xuser/waveshare_demo/API/camera_test/mjpg-streamer# ./start	
MJPG Streamer Version: svn rev:	
i: Using V4L2 device.: /dev/video0	
i: Desired Resolution: 320 x 240	
i: Frames Per Second.: 5	
i: Format YUV	
i: JPEG Quality: 80	
Adding control for Pan (relative)	
JVCIOC_CTRL_ADD - Error: Inappropriate ioctl for device	
Adding control for Tilt (relative)	
UVCIOC_CTRL_ADD - Error: Inappropriate ioctl for device	
Adding control for Pan Reset	
JVCIOC_CTRL_ADD - Error: Inappropriate ioctl for device	
Adding control for Tilt Reset	
JVCIOC_CTRL_ADD - Error: Inappropriate ioctl for device	
Adding control for Pan/tilt Reset	
UVCIOC_CTRL_ADD - Error: Inappropriate ioctl for device	
Adding control for Focus (absolute)	
JVCIOC_CTRL_ADD - Error: Inappropriate ioctl for device	
mapping control for Pan (relative)	
JVCIOC_CTRL_MAP - Error: Inappropriate ioctl for device	
mapping control for Tilt (relative)	
JVCIOC_CTRL_MAP - Error: Inappropriate ioctl for device	
mapping control for Pan Reset	
JVCIOC_CTRL_MAP - Error: Inappropriate ioctl for device	
mapping control for Tilt Reset	
JVCIOC_CTRL_MAP - Error: Inappropriate ioctl for device	
mapping control for Pan/tilt Reset	
JVCIOC_CTRL_MAP - Error: Inappropriate ioctl for device	
mapping control for Focus (absolute)	
JVCIOC_CTRL_MAP - Error: Inappropriate ioctl for device	
napping control for LED1 Mode	
JVCIOC_CTRL_MAP - Error: Inappropriate ioctl for device	
napping control for LED1 Frequency	
JVCIOC_CTRL_MAP - Error: Inappropriate ioctl for device	
mapping control for Disable video processing	
UVCIOC_CTRL_MAP - Error: Inappropriate ioctl for device	
mapping control for Raw bits per pixel	
UVCIOC_CTRL_MAP - Error: Inappropriate ioctl for device	
o: www-folder-path: ./www/	
o: HTTP TCP port: 8080	
o: username:password.: disabled	
o: commands: enabled	

图 18. 启动视频流服务器

 在一台连接同一子网的电脑上打开浏览器,输入地址: <u>http://192.168.1.143:8080/javascript.html</u>

(这个地址根据之前记下的 ip 地址确定) 即可看到上传的视频流。(默认端口号为 8080)。

© The MJPG-streamer team | Design by Andreas Viklund 图 19. 查看上传的视频流

5) 按下 Ctrl+C 结束实验。

5.2 USB WIFI 测试

- 1) 配置无线网络:
 - a) 系统断电,将标配的 USB WIFI 模块插入 BB Black 的 USB Host 接口,系统 重新上电。
 - b) 查看 USB 状态:

root@beaglebone:~# lsusb

root@beaglebone:~# lsusb ^
Bus 001 Device 002: ID 0bda:8176 Realtek Semiconductor Corp. RTL8188CUS
802.11n WLAN Adapter
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
root@beaglebone:~# 📋
· · · · · · · · · · · · · · · · · · ·

图 20. 查看 USB 状态

c) 查看以太网网络状态:

root@beaglebone:~# ifconfig

COM3 - PuTTY	3
root@beaglebone:~# ifconfig	
<pre>eth0 Link encap:Ethernet HWaddr 90:59:AF:65:FE:69 inet addr:192.168.1.143 Bcast:192.168.1.255 Mask:255.255.255 inet6 addr: fe80::9259:afff:fe65:fe69/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:I500 Metric:1 RX packets:71 errors:0 dropped:0 overruns:0 frame:0 TX packets:49 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:7270 (7.0 KiB) TX bytes:9864 (9.6 KiB) Interrupt:56</pre>	
<pre>lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:65536 Metric:1 RX packets:10 errors:0 dropped:0 overruns:0 frame:0 TX packets:10 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:980 (980.0 B) TX bytes:980 (980.0 B)</pre>	
<pre>usb0 Link encap:Ethernet HWaddr EE:AE:C6:C7:9D:AA inet addr:192.168.7.2 Bcast:192.168.7.3 Mask:255.255.255 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)</pre>	
root@beaglebone:~# 🗌	

图 21. 查看以太网网络状态

d) 关掉以太网卡,打开 WIFI 网卡

root@beaglebone:~# ifconfig eth0 down root@beaglebone:~# ifconfig wlan0 up

e) 查看 WI-FI 网络状态: root@beaglebone:~# ifconfig

COM3 - Pu	
root@beag root@beag root@beag lo	<pre>glebone:~# ifconfig eth0 down glebone:~# ifconfig wlan0 up glebone:~# ifconfig Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:65536 Metric:1 RX packets:10 errors:0 dropped:0 overruns:0 frame:0 TX packets:10 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:980 (980.0 B) TX bytes:980 (980.0 B)</pre>
usb0	Link encap:Ethernet HWaddr EE:AE:C6:C7:9D:AA inet addr:192.168.7.2 Bcast:192.168.7.3 Mask:255.255.255.252 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
wlan0	Link encap:Ethernet HWaddr 44:33:4C:76:F3:ED UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
root@beaglebone:~# []	

图 22. 查看 WI-FI 网络状态

由于没有连接 AP,可以看到 wlan0 接口的接受和发送数据包计数为 0。

f) 配置 wlan0 的 IP:

root@beaglebone:~# ifconfig wlan0 192.168.2.107

- g) 配置网关: root@beaglebone:~# route add default gw 192.168.2.1
- h) 配置 DNS:

root@beaglebone:~# vi /etc/resolv.conf 修改 nameserver 127.0.0.1 为:

nameserver 8.8.8.8

图 23. 配置 WI-FI 网络

保存后退出。

i) 扫描无线路由:

root@beaglebone:~# iwlist wlan0 scan

```
COM3 - PuTTY
                                                                                                                                           coot@beaglebone:~# iwlist wlan0 scan
                    Scan completed :
wlan0
                                        Channel:1

Frequency:2.412 GHz (Channel 1)

Quality=70/70 Signal level=-35 dEm

Encryption key:on

ESSID:"MERCURY_814"

Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 6 Mb/s

12 Mb/s; 24 Mb/s; 36 Mb/s

Bit Rates:9 Mb/s; 18 Mb/s; 48 Mb/s; 54 Mb/s

Mode:"Master
                                         Mode:Master
                                         Extra:tsf=00000004751d0181
                                         Extra: Last beacon: 650ms ago
IE: Unknown: 000B4D4552435552595F383134
                                         IE: Unknown: 010882848B960C183048
                                         IE: Unknown: 03000101
IE: Unknown: 030101
IE: Unknown: 2A0100
IE: Unknown: 32041224606C
IE: IEEE 802.111/WPA2 Version 1
                                                 Group Cipher : TKIP
Pairwise Ciphers (2) : TKIP CCMP
Authentication Suites (1) : PSK
                                                                                                                                                             E
                                               Preauthentication Supported
                                         IE: WPA Version 1
Group Cipher : TKIP
Pairwise Ciphers (2) : TKIP CCMP
Authentication Suites (1) : PSK
IE: Unknown: DD0900037F01010008FF7F
IE: Unknown: DD1A00037F030100000074EA3A1B65E276EA3A1B65
E264002C010808
                    Cell 02 - Address: B4:41:7A:55:05:A0
                                         Channel:1
                                         Quality=70/70 Signal level=-35 dBm
Encryption key:on
```

图 24. 扫描无线路由

2) 连接无线路由

b)

c)

a) 配置密匙文件/etc/wpa_supplicant.conf(这里以连接"WPA/PSK 加密无线 B4"由为例,假设连接的无线路由 ESSID 为 waveshare,密码 12345678):

```
      root@beaglebone:~# vi /etc/wpa_supplicant.conf

      修改

      network={

      key_mgmt=NONE

      }

      为:

      network={

      ssid="waveshare"

      psk="12345678"

      }

      保存后退出。

      手动连接:

      root@beaglebone:~# wpa_supplicant -B -i wlan0 -c /etc/wpa_supplicant.conf

      网络测试:
```

root@beaglebone:~# <mark>ping www.baidu.com</mark>