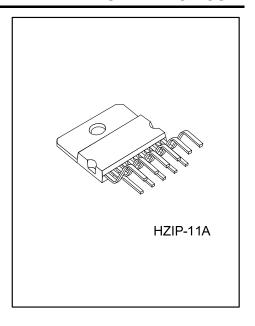
PA2009

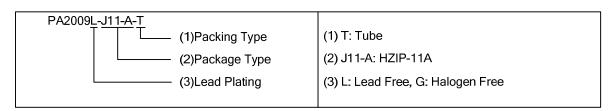
Preliminary

LINEAR INTEGRATED CIRCUIT

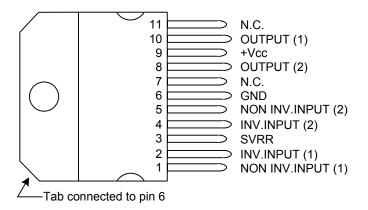

10 +10W STEREO AMPLIFIER

■ DESCRIPTION

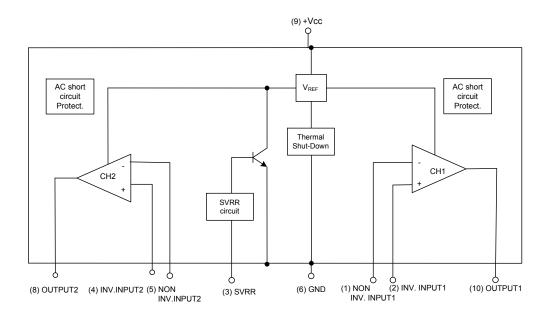
The UTC **PA2009** is a class AB stereo audio power amplifier that contains two identical amplifiers capable of delivering 10W per channel. It is designed for quality Hi-Fi stereo application which is easy to construct and has a minimum need of external components.


■ FEATURES

- * Supply range 8V ~ 28V
- * High power outputs (10W/Channel)
- * High output current up to 3.5A
- * Short circuit protection
- * Thermal protection


■ ORDERING INFORMATION

Ordering	Daakaga	Deaking		
Lead Free	Halogen Free	Package	Packing	
PA2009L-J11-A-T	PA2009G-J11-A-T	HZIP-11A	Tube	



www.unisonic.com.tw 1 of 4

■ PIN CONFIGURATION

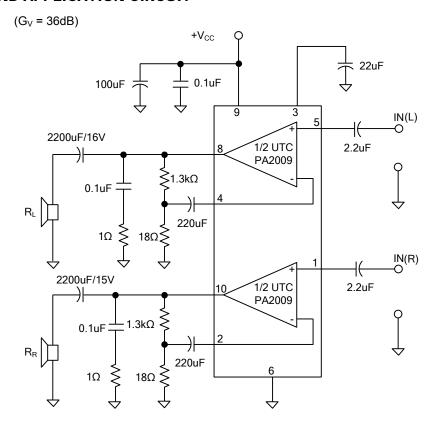
■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL RATINGS		UNIT		
Supply Voltage		V _{CC}	28	V		
Peak Output Current	repetitive, f ≥ 20Hz		3.5	Α		
	non repetitive, tp=100µs	IO(PEAK)	4.5	Α		
Power Dissipation@Tc = 90°C		P_D	20	W		
Junction Temperature	nction Temperature		on Temperature		+150	°C
Storage Temperature		T _{STG}	-40 ~ +150	°C		

Note Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA


PARAMETER	SYMBOL	RATING	UNIT
Thermal Resistance Junction to Case	θлс	3.0	°C/W

■ ELECTRICAL CHARACTERISTICS

(Refer to test circuit, Ta= 25°C, Vcc = 24V, G_V = 36dB, unless otherwise specified)

(Neier to test circuit, Ta= 25 C, VCC	2+V, O _V			,				
PARAMETER		SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Supply Voltage		V _{CC}			8		28	V
Quiescent Output Voltage		V _{OUT}	V _{CC} = 24V			11.5		V
Input Saturation Voltage (rms)		V _{IN(SAT)}			300			mV
Total Input Noise Voltage		e _N	$R_g = 10K\Omega$, 22Hz~22KHz			2.5	8	μV
Total Quiescent Drain Current		ΙQ	V _{CC} = 24V			60	120	mΑ
Output Power for each channel	$R_L = 4\Omega$		THD=1%, V _{CC} =24V, f=1kHz			12.5		W
	$R_L = 8\Omega$					7		W
	R _L =4Ω	1	f _ 40U _ 40 EUU _		10			W
	$R_L = 8\Omega$	P _{OUT}	f = 40Hz ~12.5kHz		5			W
	$R_L = 4\Omega$					7		W
	$R_L = 8\Omega$		V_{CC} = 18V, f = 1kHz			4		W
Total Harmonic Distortion for each channel	$R_L = 4\Omega$	THD	$P_{OUT} = 0.1 \sim 7.0 W$	f = 1kHz,		0.2		%
	R _L =8Ω		P _{OUT} = 0.1~3.5W			0.1		%
	R _L =4Ω		Pour = 0.1~5.0W		0.2		%	
	R _L =8Ω		P _{OUT} = 0.1~2.5W	V _{CC} =18V		0.1		%
Input Resistance		R _{IN}	f = 1kHz, Non-Inverting Input		70	200		kΩ
Frequency Roll off (-3dB)	Low	fL	$R_L = 4\Omega$			20		Hz
	High	f _H	$R_L = 4\Omega$			80		kHz
Closed Loop Voltage Gain		Gv	f = 1kHz		35.5	36	36.5	dB
Closed Loop Gain Matching		∆Gv				0.5		dB
Cross Talk	f = 1kHz	СТ	$R_L = \infty$, $Rg = 10K\Omega$			60		-ID
	f = 10kHz					50		dB
Supply Voltage Rejection for each channel		SVR	f_{RIPPLE} = 100Hz, V_{RIPPLE} = 0.5V, R_g = 10k Ω			55		dB
Thermal Shut-Down Junction Temperature						145		°C

TEST AND APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.