

DATA SHEET

Product Name Wide Terminal Thick Film Chip Resistors

Part Name WR Series

Uniroyal Electronics Global Co., Ltd.

88 Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email	marketing@uni-royal.cn
Manufacture Plant	Uniroyal Electronics Industry (kunshan) co., ltd.
	Uniroyal Electronics Industry Co., Ltd.
	Uniroyal Electronics Global Co.,Ltd Shenzhen Branch
	Aeon Technology Corporation
	Uniroyal Electronics Global Co.,Ltd Xiamen Branch
	Kunshan Foss Electronic material Co., Ltd.
	Royal Electronic Factory (thailand) co., ltd

Brands *RoyalOhm*

ROYALOHM

UniOhm

1. Scope

2.3 7th

- 1.1 This specification for approve relates to the Wide Terminal Thick Film Chip Resistors manufactured by UNI-ROYAL.
- 1.2 Suitable for both wave & re-flow soldering
- 1.3 Application: AV adapters, LCD back-light, camera strobe etc

2. Explanation of Part No. System

Part No. includes 14 codes shown as below:

2.1 1st~4th codes: Part name. E.g.: WR08, WR12, WR20, WR18, WR25

2.2 5th~6th codes: Power rating.

E.g.: W=Normal S	Size	"1~	-G'' = ``1 - 1	6"						
Wattage	1/32	3/4	1/2	1/3	1/4	1/8	1/10	1/16	1/20	1
Normal Size	WH	07	W2	W3	W4	W8	WA	WG	WM	1W

If power rating is lower or equal than 1 watt, 5^{th} code would be "W" and 6^{th} code would be a number or letter. E.g.: WA=1/10W W4=1/4W

8				
code: Tolerance. E.g.: D=±0.5%	F=±1%	G=±2%	J=±5%	$K = \pm 10\%$
41.				

 $2.4 \ 8^{th} \sim 11^{th}$ codes: Resistance Value.

2.4.1 If value belongs to standard value of \geq 5% series, 8th code would be zero, 9th~10th codes are significant figures of the resistance and 11th code is the power of ten.

2.4.2 If value belongs to standard value of $\leq 2\%$ series, $8^{th} \sim 10^{th}$ codes are significant figures of the resistance, and 11^{th} code is the power of ten. 2.4.3 11^{th} codes listed as following:

E=15000pcs

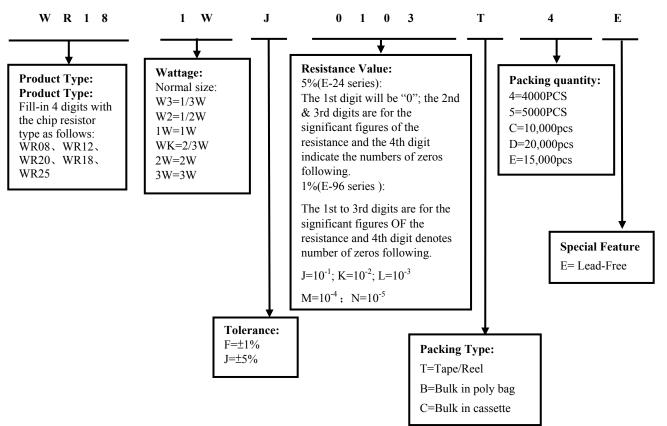
 $0=10^{0} 1=10^{1} 2=10^{2} 3=10^{3} 4=10^{4} 5=10^{5} 6=10^{6} J=10^{-1} K=10^{-2} L=10^{-3} M=10^{-4} N=10^{-5} P=10^{-6} 2.5 12^{th} \sim 14^{th} codes.$

2.5.1 12th code: Packaging Type. E.g.: C=Bulk

T=Tape/Reel

2.5.2 13th code: Standard Packing Quantity. 4=4000pcs 5=5000pcs

C=10000pcs D=20000pcs


Chip Product: BD=B/B-20000pcs TC=T/R-10000pcs

2.5.3 14th code: Special features.

E = Environmental Protection, Lead Free, or Standard type.

3. Ordering Procedure

(Example: WR18 1W ±5% 10KΩ T/R-4000)

 $R500 \rightarrow 0.5\Omega$

4. <u>Marking</u> (1) \pm 5%Tolerance: The first two digits are significant figures of resistance and the third denotes number of zeros following Example:	333 333 → 33KΩ
(2) ±5%Tolerance: Below 10Ω show as following, read alphabet "R" as decimal point. Example:	$2R2$ $2R2 \rightarrow 2.2\Omega$
(3) $\pm 1\%$ Tolerance: 4 digits, first three digits are significant; the forth digit is number of zeros. Letter r is decimal point. Example:	2701 2701 → 2.7KΩ
(4) $\pm 5\%, \pm 1\%$ Tolerance ,Product below 1 Ω , show as following, the first digit is "R" which as decimal point.	R 500 R 500 → 0.50

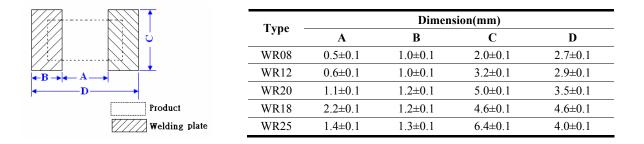
Example:

5. Dimension

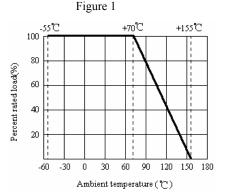
5. Dimension		Туре	Type Dimension(mm)				
			L	W	Н	А	В
	WR08(0508)	1.20±0.10	2.0±0.10	0.55±0.10	0.20±0.10	0.30±0.20	
	≜.	WR12(0612)	1.60±0.15	3.20±0.15	0.55±0.10	0.30±0.20	0.45±0.20
- - - / / *	н	WR20(1020)	2.50±0.15	5.00±0.15	0.55±0.10	0.40±0.20	0.60±0.20
	e ^B e	WR18(1218)	3.10±0.10	4.60±0.15	0.55±0.10	0.45±0.20	0.40±0.20
		WR25(1225)	3.10±0.15	6.25±0.15	0.55±0.10	0.45±0.20	0.65±0.20

6. <u>Resistance Range</u>

Туре	Power Rating at 70℃	Resista	nce Range		
Турс	Tower Rating at 70 C	±1%	±5%		
WR08	1/3W	10Ω~1M			
WK08	2/3W	10mΩ	$\leq R < 10\Omega$		
WR12	1/2W	10Ω~1M	$1\Omega < R \le 1M$		
WK12	1W	10mΩ	$10m\Omega \leq R \leq 10\Omega$		
WB 20	1W	10Ω~1M	1Ω~1M		
WR20	1 w	10mΩ~1Ω			
WR18	1W	10ms	Ω~1MΩ		
WD 25	2W	1Ω<	<r≤1m< td=""></r≤1m<>		
WR25	3W	10mΩ	$\Omega \leq R \leq 1\Omega$		



7. <u>Ratings</u>


Туре	Max Working Voltage	Max Overload Voltage	Dielectric Withstanding Voltage	Resistance Value of Jumper	Rated Current of Jumper	Max. Overload Current of Jumper	Operating Temperature
WR08	150V	300V	500V	$<$ 50m Ω	4A	8A	-55℃~155℃
WR12	200V	400V	500V	$<$ 50m Ω	5A	10A	-55℃~155℃
WR20	200V	400V	500V	$<$ 50m Ω	6A	12A	-55℃~155℃
WR18	200V	400V	500V	$<$ 50m Ω	6A	10A	-55℃~155℃
WR25	200V	400V	500V	$<$ 50m Ω	6A	15A	-55℃~155℃

8. <u>Recommend the size of welding plate</u>

9. <u>Derating Curve</u>

Resistors shall have a power rating based on continuous load operation at an ambient temperature from -55 $^{\circ}$ C to 70 $^{\circ}$ C. For temperature in excess of 70 $^{\circ}$ C, the load shall be derated as shown in figure 1

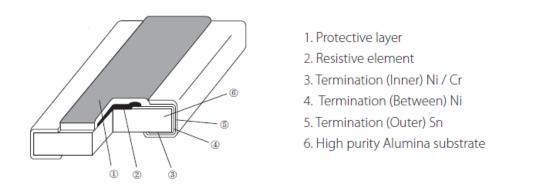
Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working

Voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$RCWV = \sqrt{P \times R}$

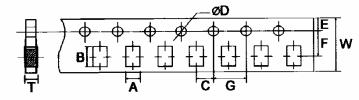
Where: RCWV commercial-line frequency and waveform (Volt.)


P = power rating (WATT.) R = nominal resistance (OHM)

In no case shall the rated DC or RMS AC continuous working voltage be greater than the applicable maximum value. The overload voltage is 2.5 times RCWV or Max. Overload voltage whichever is less

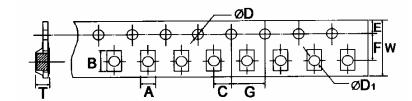
10. Structure

11. Performance Specification

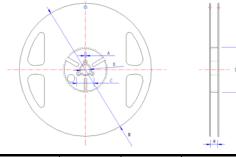

Characteristic		Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)
Temperature Coefficient	$30m\Omega \le 100: \pm 4$ $10\Omega: \pm 4$ $10\Omega < R \le 2$ $>100\Omega: \pm 100\Omega: \pm 100\Omega = 1$ $10m\Omega \le 1$ $10m\Omega \le 1$ $10m\Omega \le 1$ $10\Omega < R \le 2$ $10\Omega < R \le 10\Omega < R \le 100\Omega: \pm 100\Omega < R \le 1000\Omega < R \le 100\Omega < R \le 10000 < R \le 100000 < R \le 10000 < R \le 100000 < R \le 10000 < R \le 1$	R<30m Ω :0~+400 PPM/°C R < 10 Ω :0~+150 PPM/°C 400 PPM/°C 100 PPM/°C R<100m Ω :0~+200 PPM/°C 100 PPM/°C R<100m Ω :0~+200 PPM/°C 10 Ω :±400 PPM/°C 100 Ω :±200 PPM/°C <<30m Ω :0~+200 PPM/°C <<10 Ω :±400 PPM/°C 100 Ω :±200 PPM/°C 100 Ω :±200 PPM/°C 100 Ω :±200 PPM/°C 100 PPM/°C <<30m Ω :0~+200 PPM/°C <<10 Ω :±400 PPM/°C 100 PPM/°C <<30m Ω :0~+200 PPM/°C <<10 Ω :±400 PPM/°C <<10 Ω :±400 PPM/°C <<100 Ω :±400 PPM/°C 100 PPM/°C <<30m Ω :0~+150 PPM/°C <<10 Ω :±400 PPM/°C 100 PPM/°C <<100 Ω :±400 PPM/°C <<10 Ω :±400 PPM/°C <<10 Ω :±400 PPM/°C <<10 Ω :±400 PPM/°C	4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2 \cdot R_1}{R_1(t_2 \cdot t_1)} \times 10^6 (PPM/C)$ R ₁ : Resistance Value at room temperature (t_1) ; R ₂ : Resistance at test temperature (Upper limit temperature or Lower limit temperature) $t_1: +25^{\circ}C$ or specified room temperature t_2 : Upper limit temperature or Lower limit temperature test temperature
Short-time overload	±1% ±5%	$\pm (1.0\% + 0.005\Omega)$ $\pm (2.0\% + 0.005\Omega)$	4.13 Permanent resistance change after the application of 2.5 times RCWV for 5 seconds.
Soldering heat	±1.0%+		4.18 Dip the resistor into a solder bath having a temperature of $260^{\circ}C \pm 5^{\circ}C$ and hold it for 10 ± 1 seconds.

Dielectric withstanding voltage		of flashover mechanical damage, ulation breaks down.	4.7 Resistors shall be clamped in the trough of a 90°C metallic v- block and shall be tested at ac potential respectively specified in the given list of each product type for 60-70 seconds.			
	Coverage m	ist be over 95%.	Wave solder: Test temperature of solder: 245°C±3°C dipping time in solder: 3 seconds.			
Solderability	Go up tin rate bigger than half of end poleRapid change of temperature $\pm 1\%$ $\pm (0.5\% + 0.005\Omega)$ $\pm 5\%$ $\pm (1.0\% + 0.005\Omega)$	e bigger than half of end pole	Reflow: 250 250 200 150 150 50 200 200 200 200 200 200 20			
Rapid change of			4.19 30 min at lower limit temperature and 30 min at upper limit			
temperature	±5%	±(1.0%+0.005Ω)	temperature , 100 cycles.			
Terminal bending	±(1%+0.005	Ω)	4.33 Twist of test board: Y/X = 3/90 mm for 60Seconds			
Humidity	±1%	±(1.0%+0.005Ω)	4.24Temporary resistance change after 240 hours exposure in a			
(steady state)	±5%	±(3.0%+0.005Ω)	humidity test chamber controlled at 40±2°C and 90-95% relative humidity,			
Load life	±1%	±(1.0%+0.005Ω)	7.9 Resistance change after 1,000 hours (1.5 hours "ON",0.5			
in humidity	±5%	±(3.0%+0.005Ω)	hour "OFF") at RCWV in a humidity chamber controlled at 40 $^{\circ}C\pm 2^{\circ}C$ and 90 to 95% relative humidity.			
Load life	±1%	±(1.0%+0.005Ω)	4.25.1 Permanent resistance change after 1,000 hours operating at RCWV with duty cycle 1.5 hours "ON", 0.5 hour "OFF" at 70			
	±5%	±(3.0%+0.005Ω)	°C±2°C ambient.			
Low Temperature	±1%	±(1.0%+0.005Ω)	4.23.4 Lower limit temperature , for 2H.			
Storage	±5%	±(3.0%+0.005Ω)	1.25.1 Lower mint temperature / 101 211.			
High Temperature	±1%	±(1.0%+0.005Ω)	4.23.2 Upper limit temperature , for 16H.			
Exposure	±5%	±(3.0%+0.005Ω)	T.25.2 Opper mint temperature / 101 1011.			
Leaching	No visible da	amage	J-STD-002 Test D Samples completely immersed for 30 sec in solder bath at 260°C			

12. <u>Packing of Surface Mount Resistors</u> 12.1 Dimension of Paper Taping :(Unit: mm)



ТҮРЕ	A ±0.2	B ±0.2	C ±0.05	+0.1 ΦD -0	E ±0.1	F ±0.05	G ±0.1	W ±0.2	T ±0.1
WR08	1.65	2.40	2.0	1.5	1.75	3.5	4.0	8.0	0.81
WR12	2.00	3.60	2.0	1.5	1.75	3.5	4.0	8.0	0.81



12.2 Dimension of Embossed Taping: (Unit: mm)

							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,2,2,3,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,		
TYPE	A ±0.2	В ±0.2	C ±0.05	+ 0.1 \$\phi D - 0	+0.25 \$\overline{D1} -0 \$\$	E ±0.1	F ±0.05	G ±0.1	W ±0.2	Т ±0.1
WR20	2.9	5.6	2.0	1.5	1.5	1.75	5.5	4.0	12	1.0
WR18	3.5	4.8	2.0	1.5	1.5	1.75	5.5	4.0	12	1.0
WR25	3.5	6.7	2.0	1.5	1.5	1.75	5.5	4.0	12	1.0

12.3 Dimension of Reel : (Unit: mm)

Туре	Taping	Qty/Reel	A±0.5	B±0.5	C±0.5	D±1	M±2	W±1
WR08	Paper	5,000pcsl	2.0	13.0	21.0	60.0	178	10
WR12	Paper	5,000pcs	2.0	13.0	21.0	60.0	178	10
WR20	Embossed	4,000pcs	2.0	13.0	21.0	60.0	178	13.8
WR18	Embossed	4,000pcs	2.0	13.0	21.0	60.0	178	13.8
WR25	Embossed	4,000pcs	2.0	13.0	21.0	60.0	178	13.8

13. <u>Note</u>

- 13.1. UNI-ROYAL recommend the storage condition temperature: 15°C~35°C, humidity :25%~75%.
 - (Put condition for individual product).Even under UNI-ROYAL recommended storage condition, solderability of products over 1 year old. (Put condition for each product) may be degraded.
- 13.2. Store / transport cartons in the correct direction, which is indicated on a carton as a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.

13.3. Product performance and soldered connections may deteriorate if the products are stored in the following places:

- a. Storage in high Electrostatic.
- b. Storage in direct sunshine > rain and snow or condensation.
- c. Where the products are exposed to sea winds or corrosive gases, including Cl₂, H₂S₃ NH₃, SO₂, NO₂.

14. <u>Record</u>

Version	Description of amendment	Page	Date	Amended by	Checked by
1	First issue of this specification	1~7	Mar.20, 2018	Chen Haiyan	Chen Nana
2	Modify performance criteria	5~6	May.02, 2018	Chen Haiyan	Chen Nana
3	1.Modify the resistance range of WR12 2.Modify the Performance Specification	3 5~6	Feb.13, 2019	Chen Haiyan	Xu Yuhua

Uniroyal Electronics Global Co., Ltd., all rights reserved. Spec. herein would be changed at any time without prior notice.