

DATA SHEET

Product Name Flex Led Strip Use Thick Film Chip Resistors

Part Name LE05/LE06 Series

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel	+86 512 5763 1411 / 22 /33
Email	marketing@uni-royal.cn
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.
	Aeon Technology Corporation
	Royal Electronic Factory (Thailand) Co., Ltd.
	Royal Technology (Thailand) Co., Ltd.

<u>Scope:</u>
 1.1 This datasheet is the characteristics of Flex Led Strip Use Thick Film Chip Resistor manufactured by UNI-ROYAL.

- 1.2 Suit for reflow.
- 1.3 Stable electrical capability, high reliability.
- 1.4 Low assembly cost, suit for automatic SMT equipment
- 1.5 Superior mechanical strength and high frequency characteristics
- 1.6 According with ROHS standard and Halogen-free

2. Part No. System

Part No. includes 14 codes shown as below:

2.1 1st~4th codes: Part name. E.g.: LE05、LE06

 $2.25^{\text{th}} \sim 6^{\text{th}}$ codes: Power rating.

E.g.: W=Norm	al Size		$1 \sim G'' = 1 \sim$	~16"							
Wattag	e 1/32	3/4	1/2	1/3	1/4	1/8	1/10	1/16	1/20	1	
Normal Siz	e WH	07	W2	W3	W4	W8	WA	WG	WM	1W	

If power rating is equal or lower than 1 watt, 5th code would be "W" and 6th code would be a number or letter.

E.g.: WA=1/10W W4=1/4W

- 2.3 7th code: Tolerance. E.g.: $D=\pm 0.5\%$ $F=\pm 1\%$ $G=\pm 2\%$ $J=\pm 5\%$ $K = \pm 10\%$
- 2.4 8th~11th codes: Resistance Value.

2.4.1 If value belongs to standard value of E-24 series, the 8th code is zero, 9th~10th codes are the significant figures of resistance value, and the 11th code is the power of ten.

- 2.4.2 If value belongs to standard value of E-96 series, the 8th~10th codes are the significant figures of resistance value, and the 11th code is the power of ten.
- 2.4.311th codes listed as following:

 $0=10^0$ $1=10^1$ K=10⁻² L=10⁻³ M=10⁻⁴ $2=10^{2}$ $4 = 10^{4}$ $6 = 10^{6}$ $J=10^{-1}$ $5 = 10^5$ $3 = 10^3$ 2.5 $12^{\text{th}} \sim 14^{\text{th}}$ codes. 2.5.1 12th code: Packaging Type. E.g.: C=Bulk T=Tape/Reel 2.5.2 13th code: Standard Packing Quantity.

4=4,000pcs 5=5,000pcs C=10,000pcs D=20,000pcs E=15,000pcs TC=T/R-10000pcs

Chip Product: BD=B/B-20000pcs

2.5.3 14th code: Special features.

E = Environmental Protection, Lead Free, or Standard type.

3. Ordering Procedure

(Example: LE06 1/4W ±5% 100Ω T/R-5000)

 $201 \rightarrow 200 \Omega$

 $1000 \rightarrow 100\,\Omega$

- 4. Marking
- 4.1 \pm 5% tolerance products (E-24 series):

3 codes.

 $1^{st} \sim 2^{nd}$ codes are the significant figures of resistance value, and the rest code is the power of ten

4.2 $\pm 1\%$ tolerance products (E-96 series):

4 codes.

1st~3rd codes are the significant figures of resistance value, and the rest code is the power of ten. Letter "R" in mark means decimal point.

5. Dimension

T		Dimension	(mm)		
Гуре	L	W	Н	A1	B1
LE05(0805)	2.00±0.15	1.25 +0.15/-0.10	0.55 ± 0.10	≤1.0	0.40±0.20
LE06(1206)	3.10±0.15	1.55 +0.15/ -0.10	0.55±0.10	≤1.0	0.50±0.20

201

1000

6. <u>Resistance Range</u>

Туре	70℃ Power	Max Working Voltage	Max Overload Voltage	Tolerance	Resistance Range
LE05	1/8W	200V	400V	±1%,±5%	10Ω~820Ω
LE06	1/4W	200V	400V	±1%,±5%	10Ω~820Ω

7. <u>Structure</u>

8. <u>Recommend the size of welding plate</u>

Туре —		Dimen	sion(mm)	
	Α	В	С	D
LE05	1.0 ± 0.1	1.0±0.1	1.3±0.1	3.0±0.1
LE06	2.0±0.1	1.1±0.1	1.6±0.1	4.2±0.1

Flex Led Strip Use Thick Film Chip Resistors

9. Derating Curve

Power rating will change based on continuous load at ambient temperature from -55 to 155° C. It is constant between -55 to 70° C, and derate to zero when temperature rise from 70 to 155° C. Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

 $RCWV = \sqrt{P \times R}$

Remark: RCWV: Rating Continuous Working Voltage (Volt.) P: power rating (Watt) R: nominal resistance (Ω) In no case, the rated DC or RMS AC continuous working voltage must be greater than the applicable maximum value. The overload voltage is 2.5 times RCWV or Max. Overload voltage whichever is lower.

10. Performance Specification

Characteristic		Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)	
Temperature Coefficient	±200PPM/°C		4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2 \cdot R_1}{R_1(t_2 \cdot t_1)} \times 10^6 (\text{PPM/°C})$ R_1: Resistance Value at room temperature (t_1); R_2: Resistance at test temperature (Upper limit temperature or Lower limit temperature) t_1: +25°C or specified room temperature t_2: Upper limit temperature or Lower limit temperature test temperature	
Short-time	ort-time $\pm 1\%$ $\pm (1.0\% + 0.1\Omega)$		4.13 Permanent resistance change after the application of a notential of 2.5 times RCWV or Max. Overload Voltage	
overload	±5%	±(2.0%+0.1Ω)	potential of 2.5 times RCWV or Max. Overload Voltage whichever less for 5 seconds.	
Dielectric withstanding voltage	No evidence of f damage, arcing o	lashover mechanical or insulation breaks down.	4.7 Resistors shall be clamped in the trough of a 90°C metallic v- block and shall be tested at ac potential respectively specified in the given list of each product type for 60-70 seconds.	
	Coverage must b	be over 95%.	Wave solder: Test temperature of solder: 245°C±3°C dipping time in solder: 2- 3 seconds.	
Solderability	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	gger than half of end pole	Reflow: 250 250 200 150 50 <u>90±306</u> <u>90±306</u> <u>90±105</u> <u>100</u>	
Rapid change of	±1%	$\pm (1.0\% + 0.1\Omega).$	4.19 30 min at lower limit temperature and 30 min at upper limit	
temperature	±5%	±(3.0%+0.1Ω)	temperature , 100 cycles.	
Soldering heat	Resistance change $\pm(1\%+0.005\Omega)$	ge rate must be in	4.18 Dip the resistor into a solder bath having a temperature of $260^{\circ}C\pm5^{\circ}C$ and hold it for 10 ± 1 seconds.	
Terminal bending	After electricity,	the lamp is not bright	The interception length is a soft light band of 12 resistors, and the force of 0.5kg on the Φ 30mm PVC pipe is coiled and reversed five times	
Insulation resistance	≥1,000 MΩ		4.6 The measuring voltage shall be ,measured with a direct voltage of (100 ± 15) V or a voltage equal to the dielectric withstanding voltage., and apply for 1min.	

Humidity	±1%	±(0.5%+0.1Ω).	4.24Temporary resistance change after 240 hours exposure in a		
(steady state)	±5%	±(3.0%+0.1Ω)	$40\pm2^{\circ}$ C and 90-95% relative humidity,		
Load life	±1%	±(1.0%+0.05Ω).	7.9 Resistance change after 1,000 hours (1.5 hours "ON",0.5		
in humidity $\pm 5\%$ $\pm (3.0\% + 0.05\Omega)$	±(3.0%+0.05Ω)	four OFF) at RCW V in a number controlled at 40 $C \pm 2 C$ and 90 to 95% relative humidity.			
I 11:6-	±1%	±(1.0%+0.1Ω)	4.25.1 Permanent resistance change after 1,000 hours operating		
Load life	±5%	±(3.0%+0.1Ω)	at RC w V with duty cycle 1.5 nours "ON", 0.5 nour "OFF" at 70 $C\pm 2^{\circ}C$ ambient.		
Low	±1%	±(1.0%+0.1Ω)	4 23 4 Lower limit temperature ; for 2H		
Storage	±5%	±(3.0%+0.1Ω)	+.25.4 Lower mint temperature - for 211.		
High	±%	±(1.0%+0.1Ω)	4.22.2. Unner limit temperature a for 1611		
Exposure	±5%	±(3.0%+0.1Ω)	4.25.2 Opper limit temperature ' for 16H.		
Leaching	No visible damaş	ge	J-STD-002 Test D Samples completely immersed for 30 sec in solder bath at 260°C		

11. Packing of Surface Mount Resistors

11.1 Dimension of Paper Taping :(Unit: mm)

Tuna	А	В	С	$\Phi D_{-0}^{+0.1}$	Е	F	G	W	Т
Type	±0.2	±0.2	±0.05		±0.1	±0.05	±0.1	±0.2	±0.1
LE05	1.65	2.40	2.00	1.50	1.75	3.50	4.00	8.00	0.81
LE06	2.00	3.60	2.00	1.50	1.75	3.50	4.00	8.00	0.81

11.2 Dimension of Reel : (Unit: mm)

Туре	Taping	Qty/Reel	A±0.5	B±0.5	C±0.5	D±1	M±2	W±1
LE05	Paper	5,000pcs	2.0	13.0	21.0	60.0	178.0	10.0
LE06	Paper	5,000pcs	2.0	13.0	21.0	60.0	178.0	10.0

12. <u>Note</u>

12.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35 °C under humidity between 25 to 75% RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.

12.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.

12.3. Storage conditions as below are inappropriate:

a. Stored in high electrostatic environment

b. Stored in direct sunshine, rain, snow or condensation.

c. Exposed to sea wind or corrosive gases, such as Cl_2 , H_2S , NH_3 , SO_2 , NO_2 , etc.

13. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~6	Mar.20, 2018	Haiyan Chen	Nana Chen
2	Modify characteristic	4~5	Feb.12, 2019	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice.