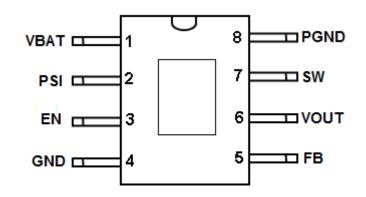
5V 6A 1.2MHz Synchronous Boost Converter

TD8588

General Description

The TD8588 is a synchronous rectifier, fixed switching frequency (1.2MHz typical), and current-mode step-up regulator. The device allows use of small inductors and output capacitors for USB devices. The current-mode control scheme provides fast transient response and good output voltage accuracy.

At light loads, the TD8588 will automatically enter in Pulse Frequency Modulation (PFM) operation to reduce the dominant switching losses. During PFM operation, the IC consumes very low quiescent current and maintains high efficiency over the complete load range. The TD8588 also includes current-limit and overtemperature shutdown to prevent damage in the event of an output overload. The TD8588 is available in ESOP-8 packages.

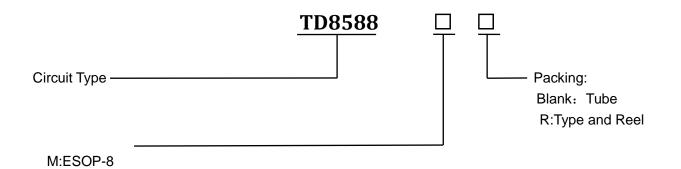

Features

- 92%EffiicencySynchronousBoostConverter With 1000-mA Output Current From 1.8V Input
- Stable with Low ESR Output Capacitors
- Fixed 1.2MHz Oscillator Frequency
- Low EMI Converter (Integrated Anti-Ringing Function)
- Low Battery Output
- Integrated Power SaveModeOperation to Improve Light Load Efficiency
- On load startup
- Automatic restart after protection
- Load Disconnected During Shutdown
- Output Current-Limit Protection
- Over Temperature Protection
- Under Voltage Protection
- Enable/ShutdownFunction
- Available in ESOP-8 Packages
- Lead Free and Green Devices Available(RoHS Compliant)

Applications

- Power Bank
- Tablet
- Portable Equiment

Pin Configurations

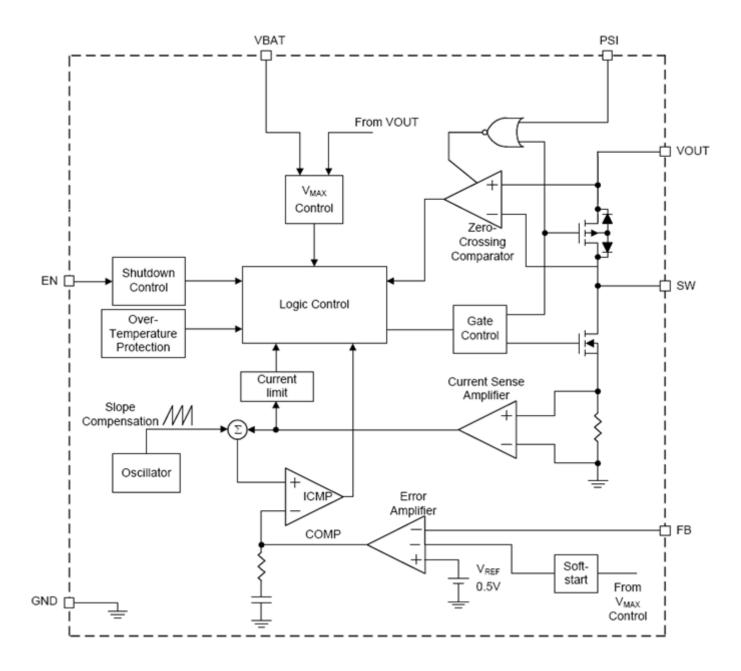

5V 6A 1.2MHz Synchronous Boost Converter

TD8588

Pin Description

NO.	NAME	FUNCTION
1	VBAT	Converter Supply Voltage.
2	PSI	Power Saving Input. Force V _{PSI} exceed 1V enter PFM. Left V _{PSI} below 0.4V enter PWM mode
3	EN	Device Enable Control Input. Force V_{EN} exceed 1V enable the device. Left V_{EN} below 0.4V to
3		shutdown.
4	GND	Signal Ground. Connect this pin to PGND.
5	FB	Converter Feedback Input.
6	VOUT	Converter Output and IC Supply Voltage
7	SW	Converter Switch Pin. Connect inductor here.
8	PGND	Power Ground. Connect these pins to GND.

Ordering Information



DATASHEET

5V 6A 1.2MHz Synchronous Boost Converter

TD8588

Functional Block Diagram

1.2MHz Synchronous Boost Converter 6A 5\/

TD8588

DATASHEET

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit	
VOUT	Output and IC Supply Voltage (Vour to GND)		-0.3 ~ 7	V
VBAT	Converter Supply Voltage (VBAT to GND)		-0.3 ~ 7	V
VSW	SW to GND Voltage	>30ns	-0.3 ~ 7	V
		<30ns	-0.3 ~ 9	V
	EN and FB to GND Voltage PGND to GND		-0.3 ~ 7	V
			-0.3 ~+0.3	V
T	Maximum Junction Temperature		150	°C
Tstg	Storage Temperature		-65 ~ 150	°C
TSDR	Maximum Lead Soldering Temperature (10 Seconds)		260	°C

Note1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Thermal Characteristics

Symbol	Parameter	Typical Value	Unit
θja	Junction-to-Ambient Resistance in free air (Note 2)	50	°C/W
Өлс	Junction-to-Case Resistance	20	°C/W

Note 2 : θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air.

Recommended Operating Conditions (Note 3)

Symbol	Parameter	Rating	Unit	
VOUT	Output and IC Supply Voltage (Vour to GND)	2.7 ~5.5	V	
VBAT	Converter Supply Voltage (VBAT to GND)	1.8 ~ V _{OUT}	V	
	SW to GND Voltage	>30ns	-0.3 ~ V _{out} +0.3	V
VSW		<30ns	-3 ~ V _{out} +3	V
	LBI, SYNC, EN, LBO and FB to GND Voltage	0 ~ V _{оит}	V	
T,	Junction Temperature		-40 ~ 125	°C
TA	Ambient Temperature		-40 ~ 85	°C

Note 3 : Refer to the typical application circuit

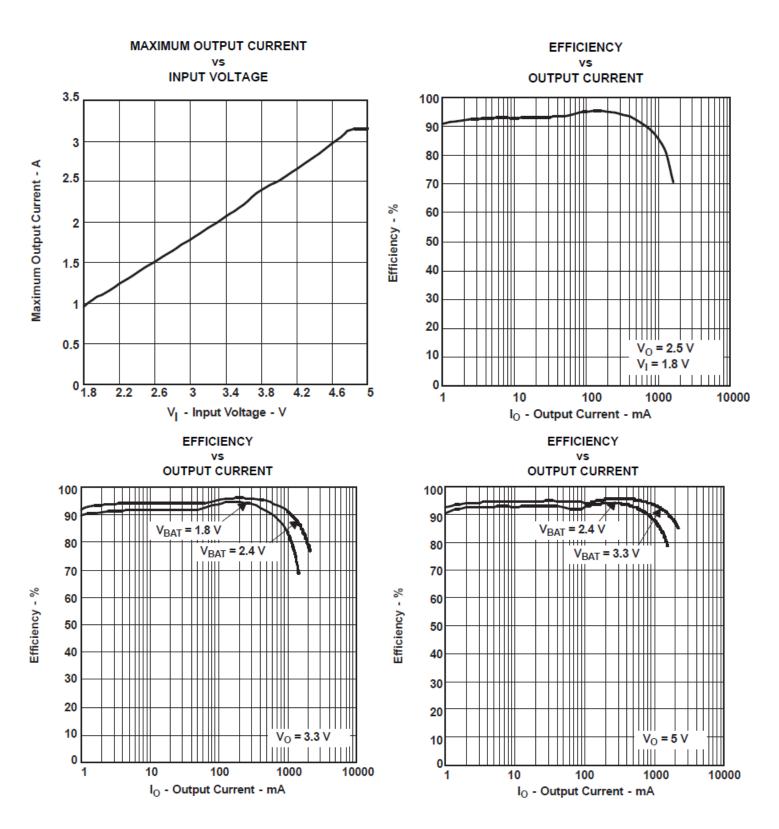
5V 6A 1.2MHz Synchronous Boost Converter

TD8588

Electrical Characteristics

Unless otherwise specified, these specifications apply over V_BAT=3.3V, Vout=5V and T_A= 25 $_{\rm o}C.$

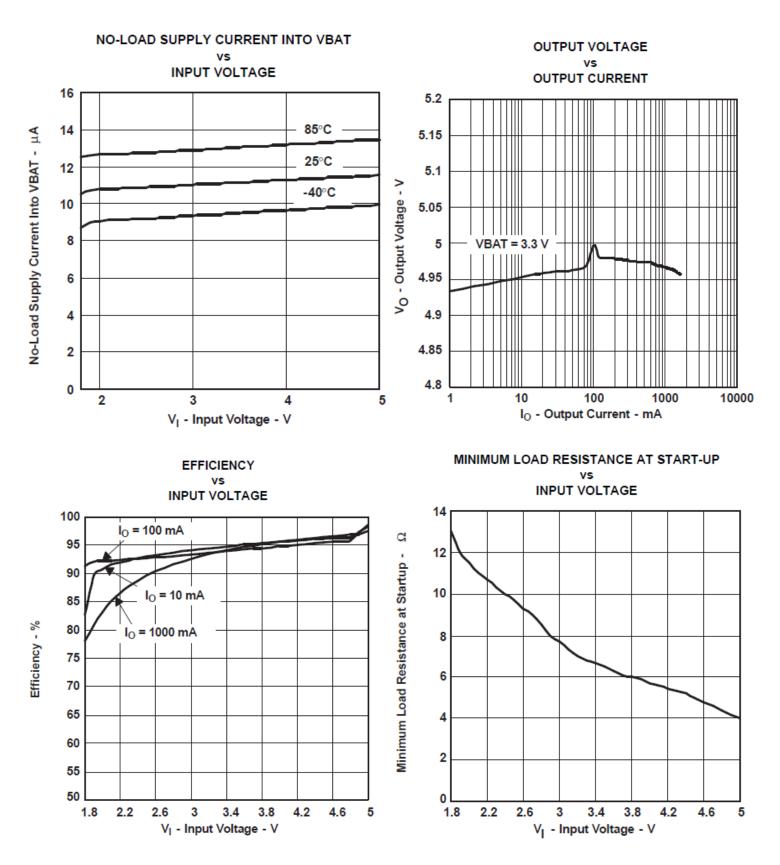
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
	Converter Supply Voltage		1.0			
Vbat	Range		1.8	-	5.5	V
Maria	Converter Output and IC		2.0	_	E E	v
Vout	Supply Voltage		3.0	-	5.5	V
DD1	No Switching Quiescent	Measured from VOUT, VFB=0.6V, VOUT=3.3V	-	40	60	uA
IDD1	Current					
IVBAT	VBAT Quiescent Current	Measured from VBAT, V_{BAT} =3.3V, EN=H	-	0.5	1	uA
VBAT-SD	VBAT Quiescent Current	VEN=GND, VBAT=3.3V (Isolate VBAT & VOUT)	-	0.1	1	uA
Vuvlo	VBAT Under Voltage Lockout Threshold		1.6	1.7	1.8	v
Vref	Regulated Feedback Voltage		490	500	510	mV
IFB	FB Input Leakage Current		-100	-	100	nA
	Over Temperature Protection Hysteresis(note 4)	TJ Falling	-	30	-	°C
Fosc	Switching Frequency	FB=GND	900	1200	1500	MHz
R N-FET	N-FET Switch On Resistance	Vout=5V	-	55	-	mΩ
R P-FET	P-FET Switch On Resistance	Vout=5V	-	55	-	mΩ
	N-FET Current Limit	Vout=5V	6	-	-	Α
	Dead-time (note 4)	Vout=3.3V~5V	-	10	-	ns
Dмах	SW Maximum Duty Cycle		85	95	-	%
	PFM Current Limit		-	700	-	mA
	EN Input Low Threshold		-	-	0.4	V
EN	EN Input High Threshold		1	-	-	V
	Internal Pull Low		-	500	-	kΩ
201	PSI Input Low Threshold		-	-	0.4	V
PSI	PSI Input High Threshold		1	-	-	V
IEN	EN Input Leakage Current	VEN=1.5V	-	3	5	uA
IPSI	PSI Input Leakage Current	VPSI=1.5V	-	0.4	1	uA
Vzc	P-FET Zero Current Detect		-	+100	-	mA
	VFB Under Voltage Protection		70	75	80	%Vre
	UVP Debounce	(Option)	-	2	-	us
Тотр	Over Temperature Protection (note 4)	TJ Rising	-	150	-	°C
	Over Temperature Protection Hysteresis(note 4)	TJ Falling	-	30	-	∘C


Note 4: Guaranteed by design, not production tested.

5V 6A 1.2MHz Synchronous Boost Converter

TD8588

Typical Operating Characteristics

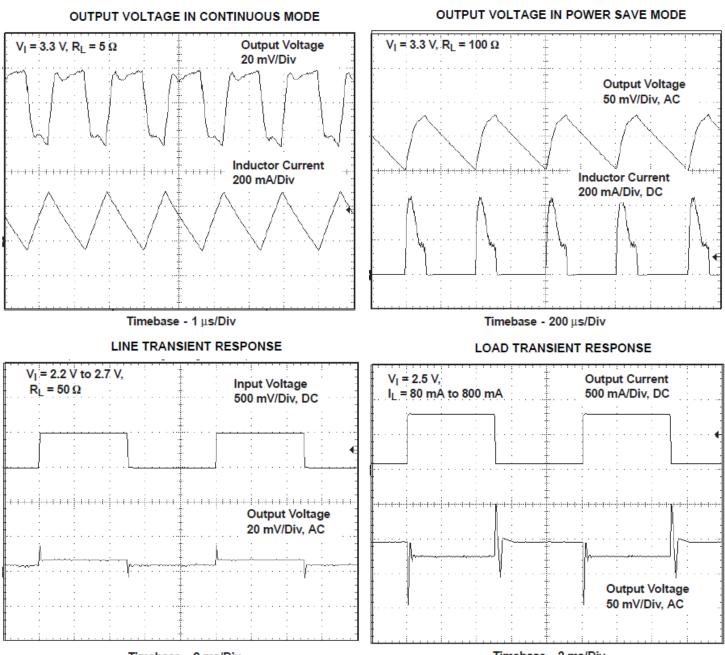


5V

TD8588

DATASHEET

Typical Operating Characteristics(Cont.)



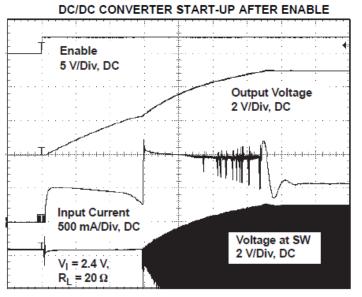
DATASHEET

1.2MHz Synchronous Boost Converter 5V 6A

TD8588

Typical Operating Characteristics(Cont.)

Timebase - 2 ms/Div


Timebase - 2 ms/Div

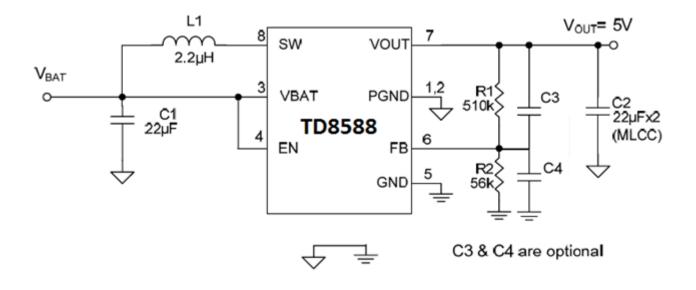
5V 6A 1.2MHz Synchronous Boost Converter

TD8588

DATASHEET

Typical Operating Characteristics(Cont.)

Timebase - 400 µs/Div



DATASHEET

5V 6A 1.2MHz Synchronous Boost Converter

TD8588

Type Application Circuit

5V 6A 1.2MHz Synchronous Boost Converter

TD8588

Function Description

Main Control Loop

The TD8588 is a constant frequency, synchronous rectifier, and current-mode switching regulator. In normal operation, the internal N-channel power MOSFET is turned on each cycle when the oscillator sets an internal RS latch and turned off when an internal comparator (ICMP) resets the latch. The peak inductor current which ICMP resets the RS latch is controlled by the voltage on the COMP node, which is the output of the error amplifier (EAMP). An external resistive divider connected between V_{OUT} and ground allows the EAMP to receive an output feedback voltage V_{FB} at FB pin. When the load current increases, it causes a slightly decrease in V_{FB} relative to the 0.5V reference, which in turn causes the COMP voltage to increase until the average inductor current matches the new load current.

Start-up

A start-up oscillator circuit is integrated in the TD8588. When the device enables, the circuit pumps the output voltage high. Once the output voltage reaches 1.6V (typ), the main DC-DC circuitry turns on and boosts the output voltage to the final regulation voltage.

Automatic PFM/PWM mode Switch

The TD8588 is a fixed frequency PWM peak current modulation control step-up converter. At light loads, the TD8588 will automatically enter in pulse frequency modulation operation to reduce the dominant switching losses. In PFM operation, the inductor current may reach zero or reverse on each pulse. A zero current comparator turns off the P-channel synchronous MOSFET, forcing DCM(Discontinuous Current Mode) operation at light load. These controls get very low quiescent current, help to maintain high efficiency over the complete load range. **Synchronous Rectification**

The internal synchronous rectifier eliminates the need for an external Schottky diode, thus reducing cost and board space. During the cycle off-time, the P-FET turns on and shunts the FET body diode. As a result, the synchronous rectifier significantly improves efficiency without the addition of an external component. Conversion efficiency can be as high as 92%.

Load Disconnect

Driving EN to ground places the TD8588 in shutdown mode. When in shutdown, the internal power MOSFET turns off, all internal circuitry shuts down and the quiescent supply current reduces to 1μ A maximum.

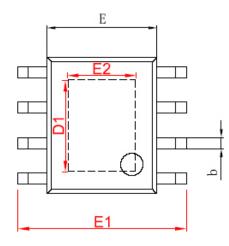
A special circuit is applied to disconnect the load from the input during shutdown the converter. In conventional synchronous rectifier circuits, the back-gate diode of the highside P-FET is forward biased in shutdown and allows current flowing from the battery to the output. However, this device uses a special circuit, which takes the cathode of the back-gate diode of the high-side P-FET and disconnects it from the source when the regulator is shutdown. The benefit of this feature for the system design engineer is that the battery is not depleted during shutdown of the converter. No additional components must be added to the design to make sure that the battery is disconnected from the output of the converter.

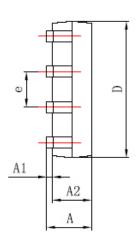
Current-Limit Protection

The TD8588 monitors the inductor current, flowing through the N-FET, and limits the current peak at currentlimit level to prevent loads and the TD8588 from damages during overload conditions.

Over-Temperature Protection (OTP)

The over-temperature circuit limits the junction temperature of the TD8588. When the junction temperature exceeds 150°C, a thermal sensor turns off the both N-FET and P-FET, allowing the devices to cool. The thermal sensor allows the converters to start a soft-start process and regulate the output voltage again after the junction temperature cools by 30°C. The OTP is designed with a 30°C hysteresis to lower the average Junction Temperature (T₂) during continuous thermal overload conditions, increasing the lifetime of the device.


5V 6A 1.2MHz Synchronous Boost Converter


TD8588

DATASHEET

Package Information

ESOP-8

	Dimensions Ir	n Millimeters	Dimensions	In Inches
	Min	Max	Min	Max
A	1.350	1.750	0.053	0.069
A1	0.050	0. 150	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0. 330	0.510	0.013	0. 020
с	0. 170	0. 250	0.006	0.010
D	4. 700	5.100	0. 185	0.200
D1	3. 202	3. 402	0. 126	0. 134
E	3.800	4.000	0. 150	0. 157
E1	5.800	6.200	0. 228	0. 244
E2	2. 313	2. 513	0. 091	0.099
е	1. 270 (BSC)		0. 050 (BSC)	
L	0. 400	1.270	0.016	0.050
θ	0°	8°	0°	8°

5V 6A 1.2MHz Synchronous Boost Converter

TD8588

Design Notes