BeagleBone Green SKU:102010027

SeeedStudio BeagleBone Green(BBG)是专为开发者和业余爱好者设计的,低成本,开源,社区支持的开发平台。这是BeagleBoard.org和Seeed Studio的共同努力。它基于BeagleBone Black 的经典开源硬件设计,并 开发成这种差异化版本。BBG包括两个Grove连接器,使其更容易连接到大量Grove传感器系列。移除板载 HDMI为这些Grove连接器腾出空间。

在不到10秒内启动Linux,只需一根USB电缆即可在5分钟内开始开发。

产品特性

- 和BeagleBone Black完全兼容
- 处理器: AM335x 1GHz ARMR Cortex-A8
 - 512MB DDR3 RAM
 - 4GB 8-bit eMMC 板载 flash 存储
 - 3D 图形加速器
 - NEON 浮点加速器
 - 2x PRU 32-bit 微处理器
- 接口
 - USB client可供电和通信
 - USB host
 - Ethernet
 - 2x 46 pin 接头
 - 2x Grove connectors (I2C and UART)
- 系统兼容
 - Debian
 - Android
 - Ubuntu
 - Cloud9 IDE on Node.js w/ BoneScript library

• 即将兼容更多

规格参数

项目	内容
处理器	AM335x 1GHz ARMR Cortex-A8
RAM	512MB DDR3
板载Flash 存储	4GB eMMC
CPU Supports	NEON floating-point & 3D graphics accelerator
Micro USB Supports	powering & communications
USB	Host 1
Grove Connectors	2 (One I2C and One UART)
GPIO	2 x 46 pin headers
Ethernet	1
工作温度	0 ~ 75°

创意应用

- 物联网
- 智能家居
- 工业应用
- 自动化过程控制
- 机器人交互
- 传感器节点

这里有一些有趣的项目可以供您参考。

Home Center	Retro Lamp	Drive a Motor
MAKE IT NOW!	MAKE IT NOW!	MAKE IT NOW!
BBG Acrylic Case	GPIO Control	Smart Light

MAKE IT NOW!

MAKE IT NOW!

MAKE IT NOW!

硬件概述

- USB Host USB Host
- DC Power and USB Client 为板子供电并且作为从机
- LEDs
 - D2 在 boot 中配置为心跳闪烁
 - D3 在 boot 中配置为读写SD卡数据时亮起
 - D4 在 boot 中配置为当 CPU 活动时亮起
 - D5 在 boot 中配置为当eMMC 读写时亮起
- Boot 按钮
 - 当有SD卡插入时,系统将首先从SD卡启动,如果要从eMMC启动,请按此按钮,然后接通电源.
 - 当启动后就作为一个普通按钮, 连接到 GPIO_72
- I2C Grove Interface 连接到 I2C2
- Uart Grove Interface 连接到 UART2
- Serial Debug 连接到 UARTO, PIN1~PIN6: GND, NC, NC, RX, TX, NC, 请注意pin1 是指靠近USB 的管脚.

管脚图

每个数字 I/O pin 拥有8种不同模式可供选择,包括 GPIO.

65 种不同可能的数字 I/Os

!!!Note 在 GPIO 模式下,每个数字 I/O 管脚都可以处理中断。

65 POSSIBLE DIGITAL I/OS									
	P	9				P	8		
DGND	1	2	DGND		DGND	1	2	DGND	
VDD_3_3	3	4	VDD_3V3		GPIO_38	3	4	GPIO_39	
VDD_5V	5	6	VDD_5V		GPIO_34	5	6	GPIO_35	
SYS_5V	7	8	SYS_5V		GPIO_66	7	8	GPIO_67	
PWR_BUT	9	10	SYS_RESETN		GPIO_69	9	10	GPIO_68	
GPIO_30	11	12	GPIO_60		GPIO_45	11	12	GPIO_44	
GPIO_31	13	14	GPIO_50		GPIO_23	13	14	GPIO_26	
GPIO_48	15	16	GPIO_51		GPIO_47	15	16	GPIO_46	
GPIO_5	17	18	GPIO_4		GPIO_27	17	18	GPIO_65	
I2C2_CAL	19	20	I2C2_SDA		GPIO_22	19	20	GPIO_63	
GPIO_3	21	22	GPIO_2		GPIO_62	21	22	GPIO_37	
GPIO_49	23	24	GPIO_15		GPIO_36	23	24	GPIO_33	
GPIO_117	25	26	GPIO_14		GPIO_32	25	26	GPIO_61	
GPIO_115	27	28	GPIO_123		GPIO_86	27	28	GPIO_88	
GPIO_121	29	30	GPIO_122		GPIO_87	29	30	GPIO_89	
GPIO_120	31	32	VDD_ADC		GPIO_10	31	32	GPIO_11	
AIN4	33	34	GNDA_ADC		GPIO_9	33	34	GPIO_81	
AIN6	35	36	AIN5		GPIO_8	35	36	GPIO_80	
AIN2	37	38	AIN3		GPIO_78	37	38	GPIO_79	
AIN0	39	40	AIN1		GPIO_76	39	40	GPIO_77	
GPIO_20	41	42	GPIO_7		GPIO_74	41	42	GPIO_75	
DGND	43	44	DGND		GPIO_72	43	44	GPIO_73	
DGND	45	46	DGND		GPIO_70	45	46	GPIO_71	

PWMs and Timers

!!!Note 高达8个数字 I/O 引脚可以被配置成脉冲宽度调制模式 (PWM),从而在无需CPU参与的情况下用于产生 信号来控制电机或者产生模拟电平。

PWMs and Tim	PWMs and Timers									
	P	9				Р	8			
DGND	1	2	DGND		DGND	1	2	DGND		
VDD_3_3	3	4	VDD_3V3		GPIO_38	3	4	GPIO_39		
VDD_5V	5	6	VDD_5V		GPIO_34	5	6	GPIO_35		
SYS_5V	7	8	SYS_5V		TIMER4	7	8	TIMER7		
PWR_BUT	9	10	SYS_RESETN		TIMER5	9	10	TIMER6		
GPIO_30	11	12	GPIO_60		GPIO_45	11	12	GPIO_44		
GPIO_31	13	14	EHRPWM1A		EHRPWM2B	13	14	GPIO_26		
GPIO_48	15	16	EHRPWM1B		GPIO_47	15	16	GPIO_46		
GPIO_5	17	18	GPIO_4		GPIO_27	17	18	GPIO_65		
I2C2_CAL	19	20	I2C2_SDA		EHRPWM2A	19	20	GPIO_63		
EHRPWM0B	21	22	EHRPWM0A		GPIO_62	21	22	GPIO_37		
GPIO_49	23	24	GPIO_15		GPIO_36	23	24	GPIO_33		
GPIO_117	25	26	GPIO_14		GPIO_32	25	26	GPIO_61		
GPIO_115	27	28	ECAPPWM2		GPIO_86	27	28	GPIO_88		
EHRPWM0B	29	30	GPIO_122		GPIO_87	29	30	GPIO_89		
EHRPWM0A	31	32	VDD_ADC		GPIO_10	31	32	GPIO_11		
AIN4	33	34	GNDA_ADC		GPIO_9	33	34	EHRPWM1B		
AIN6	35	36	AIN5		GPIO_8	35	36	EHRPWM1A		
AIN2	37	38	AIN3		GPIO_78	37	38	GPIO_79		
AIN0	39	40	AIN1		GPIO_76	39	40	GPIO_77		
GPIO_20	41	42	GPIO_7		GPIO_74	41	42	GPIO_75		
DGND	43	44	DGND		GPIO_72	43	44	GPIO_73		
DGND	45	46	DGND		EHRPWM2A	45	46	EHRPWM2B		

模拟输入

!!!Note 请确保在任何模拟引脚加的输入电压不高于1.8V。板卡上只有一个8通道的 12-bit 数模转化器,其中7个 通道引出到接口。

Analog Inputs							
	P	9			P	8	
DGND	1	2	DGND	DGND	1	2	DGND
VDD_3_3	3	4	VDD_3V3	GPIO_38	3	4	GPIO_39
VDD_5V	5	6	VDD_5V	GPIO_34	5	6	GPIO_35
SYS_5V	7	8	SYS_5V	GPIO_66	7	8	GPIO_67
PWR_BUT	9	10	SYS_RESETN	GPIO_69	9	10	GPIO_68
GPIO_30	11	12	GPIO_60	GPIO_45	11	12	GPIO_44
GPIO_31	13	14	GPIO_50	GPIO_23	13	14	GPIO_26
GPIO_48	15	16	GPIO_51	GPIO_47	15	16	GPIO_46
GPIO_5	17	18	GPIO_4	GPIO_27	17	18	GPIO_65
I2C2_CAL	19	20	I2C2_SDA	GPIO_22	19	20	GPIO_63
GPIO_3	21	22	GPIO_2	GPIO_62	21	22	GPIO_37
GPIO_49	23	24	GPIO_15	GPIO_36	23	24	GPIO_33
GPIO_117	25	26	GPIO_14	GPIO_32	25	26	GPIO_61
GPIO_115	27	28	GPIO_123	GPIO_86	27	28	GPIO_88
GPIO_121	29	30	GPIO_122	GPIO_87	29	30	GPIO_89
GPIO_120	31	32	VDD_ADC	GPIO_10	31	32	GPIO_11
AIN4	33	34	GNDA_ADC	GPIO_9	33	34	GPIO_81
AIN6	35	36	AIN5	GPIO_8	35	36	GPIO_80
AIN2	37	38	AIN3	GPIO_78	37	38	GPIO_79
AIN0	39	40	AIN1	GPIO_76	39	40	GPIO_77
GPIO_20	41	42	GPIO_7	GPIO_74	41	42	GPIO_75
DGND	43	44	DGND	GPIO_72	43	44	GPIO_73
DGND	45	46	DGND	GPIO_70	45	46	GPIO_71

UART

!!!Note 有一个专用的连接头用于连接UARTO脚并且连接到debug线缆。5个附加的串行口也连接到了扩展接口。

UART							
	Р	9			P	8	
DGND	1	2	DGND	DGND	1	2	DGND
VDD_3_3	3	4	VDD_3V3	GPIO_38	3	4	GPIO_39
VDD_5V	5	6	VDD_5V	GPIO_34	5	6	GPIO_35
SYS_5V	7	8	SYS_5V	GPIO_66	7	8	GPIO_67
PWR_BUT	9	10	SYS_RESETN	GPIO_69	9	10	GPIO_68
UART4_RXD	11	12	GPIO_60	GPIO_45	11	12	GPIO_44
UART4_TXD	13	14	GPIO_50	GPIO_23	13	14	GPIO_26
GPIO_48	15	16	GPIO_51	GPIO_47	15	16	GPIO_46
GPIO_5	17	18	GPIO_4	GPIO_27	17	18	GPIO_65
UART1_RTSN	19	20	UART1_CTSN	GPIO_22	19	20	GPIO_63
UART2_TXD	21	22	UART2_RXD	GPIO_62	21	22	GPIO_37
GPIO_49	23	24	UART1_TXD	GPIO_36	23	24	GPIO_33
GPIO_117	25	26	UART1_RXD	GPIO_32	25	26	GPIO_61
GPIO_115	27	28	GPIO_123	GPIO_86	27	28	GPIO_88
GPIO_121	29	30	GPIO_122	GPIO_87	29	30	GPIO_89
GPIO_120	31	32	VDD_ADC	UART5_CTSN+	31	32	UART5_RTSN
AIN4	33	34	GNDA_ADC	UART4_RTSN	33	34	UART3_RTSN
AIN6	35	36	AIN5	UART_4_CTSN	35	36	UART3_CTSN
AIN2	37	38	AIN3	UART5_TXD+	37	38	UART5_RXD+
AIN0	39	40	AIN1	GPIO_76	39	40	GPIO_77
GPIO_20	41	42	GPIO_7	GPIO_74	41	42	GPIO_75
DGND	43	44	DGND	GPIO_72	43	44	GPIO_73
DGND	45	46	DGND	GPIO_70	45	46	GPIO_71

12C

!!!Note 第一个I2C总线用于读取Cape附加板上的EEPROMS,为了不会影响该功能该总线不能用于其他数字I/O 操作,,但您仍然可以使用它在可用地址中添加其他I2C设备。第二个I2C总线可供您自由配置和使用。

12C							
	P	9			P	8	
DGND	1	2	DGND	DGND	1	2	DGND
VDD_3_3	3	4	VDD_3V3	GPIO_38	3	4	GPIO_39
VDD_5V	5	6	VDD_5V	GPIO_34	5	6	GPIO_35
SYS_5V	7	8	SYS_5V	GPIO_66	7	8	GPIO_67
PWR_BUT	9	10	SYS_RESETN	GPIO_69	9	10	GPIO_68
GPIO_30	11	12	GPIO_60	GPIO_45	11	12	GPIO_44
GPIO_31	13	14	GPIO_50	GPIO_23	13	14	GPIO_26
GPIO_48	15	16	GPIO_51	GPIO_47	15	16	GPIO_46
I2C1_SCL	17	18	I2C1_SDA	GPIO_27	17	18	GPIO_65
I2C2_SCL	19	20	I2C2_SDA	GPIO_22	19	20	GPIO_63
I2C2_SCL	21	22	I2C2_SDA	GPIO_62	21	22	GPIO_37
GPIO_49	23	24	I2C1_SCL	GPIO_36	23	24	GPIO_33
GPIO_117	25	26	I2C1_SDA	GPIO_32	25	26	GPIO_61
GPIO_115	27	28	GPIO_123	GPIO_86	27	28	GPIO_88
GPIO_121	29	30	GPIO_122	GPIO_87	29	30	GPIO_89
GPIO_120	31	32	VDD_ADC	GPIO_10	31	32	GPIO_11
AIN4	33	34	GNDA_ADC	GPIO_9	33	34	GPIO_81
AIN6	35	36	AIN5	GPIO_8	35	36	GPIO_80
AIN2	37	38	AIN3	GPIO_78	37	38	GPIO_79
AIN0	39	40	AIN1	GPIO_76	39	40	GPIO_77
GPIO_20	41	42	GPIO_7	GPIO_74	41	42	GPIO_75
DGND	43	44	DGND	GPIO_72	43	44	GPIO_73
DGND	45	46	DGND	GPIO_70	45	46	GPIO_71

SPI

!!!Note 若是需要快速传输数据,您可以考虑使用SPI接口。

SPI							
	P	9			P	8	
DGND	1	2	DGND	DGND	1	2	DGND
VDD_3_3	3	4	VDD_3V3	GPIO_38	3	4	GPIO_39
VDD_5V	5	6	VDD_5V	GPIO_34	5	6	GPIO_35
SYS_5V	7	8	SYS_5V	GPIO_66	7	8	GPIO_67
PWR_BUT	9	10	SYS_RESETN	GPIO_69	9	10	GPIO_68
GPIO_30	11	12	GPIO_60	GPIO_45	11	12	GPIO_44
GPIO_31	13	14	GPIO_50	GPIO_23	13	14	GPIO_26
GPIO_48	15	16	GPIO_51	GPIO_47	15	16	GPIO_46
SPI0_CS0	17	18	SPI0_D1	GPIO_27	17	18	GPIO_65
SPI1_CS1	19	20	SPI1_CS0	GPIO_22	19	20	GPIO_63
SPI0_D0	21	22	SPI0_SCLK	GPIO_62	21	22	GPIO_37
GPIO_49	23	24	GPIO_15	GPIO_36	23	24	GPIO_33
GPIO_117	25	26	GPIO_14	GPIO_32	25	26	GPIO_61
GPIO_115	27	28	SPI1_CS0	GPIO_86	27	28	GPIO_88
SPI1_D0	29	30	SPI1_D1	GPIO_87	29	30	GPIO_89
SPI1_SCLK	31	32	VDD_ADC	GPIO_10	31	32	GPIO_11
AIN4	33	34	GNDA_ADC	GPIO_9	33	34	GPIO_81
AIN6	35	36	AIN5	GPIO_8	35	36	GPIO_80
AIN2	37	38	AIN3	GPIO_78	37	38	GPIO_79
AIN0	39	40	AIN1	GPIO_76	39	40	GPIO_77
GPIO_20	41	42	SPI1_CS1	GPIO_74	41	42	GPIO_75
DGND	43	44	DGND	GPIO_72	43	44	GPIO_73
DOND	45	46	DOND	CDIO 70	45	46	GDIO 71

入门指南

!!!Note 此章节是基于Windows 10 系统,其他操作系统的指南与此类似。

步骤1.通过 USB 接口连接 BBG

使用我们提供的Micro-USB电缆将您的BBG接入电脑。这将同时为电路板供电并提供开发接口。BBG将从板载 2GB或4GB eMMC启动Linux。

BBG将作为闪存驱动器运行,为您提供文档和驱动程序的本地副本。请注意,此接口可能不用于使用新映像重新配置microSD卡,但可用于使用uEnv.txt文件更新引导参数。

您将看到PWR LED稳定点亮。在10秒钟内,您应该看到另一个LED以其默认配置闪烁。

- D2 在 boot 中配置为心跳闪烁
- D3 在 boot 中配置为读写SD卡数据时亮起
- D4 在 boot 中配置为当 CPU 活动时亮起
- D5 在 boot 中配置为当eMMC 读写时亮起

步骤2.安装驱动

为您的操作系统安装驱动程序,让您的Beaglebone可以通过USB访问网络。其他驱动程序可让您访问的主板。

操作系统 USB 驱动 备注

操作系统	USB 驱动	备注
Windows (64- bit)	64-bit installer	
Windows (32- bit)	32-bit installer	
Mac OS X	Network and Serial	注意Network和Serial是两个不同的驱动,您都需要安装
Linux	mkudevrule.sh	驱动程序安装不是必需的,但是您可能会发现几个udev规则很有帮助。.

!!!Note 对于Windows系统,请注意以下几点:

* Windows 驱动认证警告可能会弹出两到三次,点击 "忽略", "安装" 或者 "运行"

* 点击下面链接查看您需要安装64位或者32位 [点击这里]

(https://support.microsoft.com/kb/827218)

* 在非最新版本的Windows系统下,您在安装过程中可能会遇到错误 (0xc000007b)。在这种情况 下,请点击 [安装](https://www.microsoft.com/en-us/download/confirmation.aspx? id=13523) 再重试一次。 * 您可能需要重启电脑。

- * 该驱动在Windows 10 下测试通过。

!!!Note Additional FTDI USB to serial/JTAG information and drivers are available from https://www.ftdichip.com/Drivers/VCP.htm.

!!!Note Additional USB to virtual Ethernet information and drivers are available from https://www.linuxusb.org/gadget/ and https://joshuawise.com/horndis.

步骤3. 使用浏览器浏览您的 Beagle

使用Chrome或Firefox(Internet Explorer将不起作用),浏览到您的电路板上运行的Web服务器。 它将加载一 个演示文稿,向您显示电路板的功能。使用键盘上的箭头键浏览演示文稿。使用Chrome或Firefox (Internet Explorer将不起作用),浏览到您的电路板上运行的Web服务器。 它将加载一个演示文稿,向您展示电路板的 功能。使用键盘上的箭头键导航演示文稿。

点击 http://192.168.7.2 来加载您的 BBG. 较旧的软件映像要求您使用BEAGLE_BONE驱动器启动网络。 使用最 新的软件映像,不再需要该步骤。

步骤4. Cloud9 IDE

要开始编辑您的主板上的程序,可以单击下面链接来开启 Cloud9 IDE

Open Cloud9 IDE of BBG

更新到最新的软件

您需要将主板更新到最新的软件以保持更好的性能,这里我们将向您展示如何逐步实现。

步骤1.下载最新的固件

首先,您必须在这里下载合适的固件。

Download the latest image of BBG

!!!Note 由于软件大小,此下载可能需要约30分钟或更长时间。

您下载的文件将有一个**img.xz **扩展名。这是用于SD卡烧录的固件。

步骤2. 安装SD卡烧录程序

下载并且安装 Image Writer for Windows. 请确保您下载的是对应自己系统的版本。

步骤3. 将您的固件写入SD卡

首先需要通过一个SD适配器将microSD卡连接到电脑。 然后使用软件Image Write for Windows将解压缩的固件 写入SD卡。

👒 Win32 Disk I	lmager			\Box \times
Image File				Device
mg/bone-debi an-8	. 4-lxqt-4gb-a	rmhf-2016-05	-13-4gb.img 🚺	🔁 [K:\]
- I mare not				
Progress				
Progress				

点击 Write 按钮,然后写入程序将开启。

	5			
Image File				Device
mg/bone-debian-6	8.4—lxqt—4gb—s	urmhf-2016-05	-13-4gb.img [🔁 [K:\] 🦷
Copy 🗹 MD5 Ha	ash: 18020£908	321733dd8b37	20b3642£521	
Copy 🗹 MD5 Ha	ash: 18020f908	321733dd8b37	20b3642£521	2%
Copy MD5 Ha	ash: 18020f908	321733dd8b37	20b3642f521	2%
Copy MD5 Ha Progress Version: 0.9.5	ash: 18020f908 Cancel	321733dd8b37 Read	20b3642f521 Write	2% Exit

!!!Note * 您可能会看到有关损坏SD卡的警告,请您放心选择接受。 * 此时您不应将 BeagleBone 链接到电脑。
* 整个过程大概会持续10分钟。

步骤4.从SD卡启动您的系统

关闭电源,插入SD卡,然后打开电源,系统就将从SD卡启动。

!!!Note

• 如果您不需要将固件写入您的板载eMMC,则无需阅读本章最后一章。否则请继续。

如果您希望将固件写入您的板载eMMC,则需要加载进板卡并修改文件。

在 /boot/uEnv.txt 中找到:

```
##enable BBB: eMMC Flasher:
#cmdline=init=/opt/scripts/tools/eMMC/init-eMMC-flasher-v3.sh
```

修改为:

```
##enable BBB: eMMC Flasher:
cmdline=init=/opt/scripts/tools/eMMC/init-eMMC-flasher-v3.sh
```

然后您将看到4个LED灯会如下图闪烁。

!!!Note

• 如果没有看到上图所示的的灯迹,请按RESET按钮重置电路板。

当闪烁完成时,所有4个用户指示灯 LED将关闭。最新的Debian系统在完成固件加载后自动关闭电路板。这个 过程最多可能会持续** 10分钟**。关闭电源,取出SD卡,再次接通电源即可完成。

Grove for BBG

Grove 是一个模块,是一个具有标准协议的连接器系统。Grove采用积木式组装电子技术。与基于跳线或焊接的系统相比,具有连接方便、结构简单、易于上手、可快速入门学习等诸多优点。

下表罗列了适用于 BBG 的Grove 模块.

SKU	名称	接口	购买链接
101020054	Grove - 3-Axis Digital Accelerometer(+16g)	I2C	购买链接
101020071	Grove - 3-Axis Digital Accelerometer(+400g)	I2C	购买链接
101020034	Grove - 3-Axis Digital Compass	I2C	购买链接
101020050	Grove - 3-Axis Digital Gyro	Analog	购买链接
101020081	Grove - 6-Axis Accelerometer&Compass v2.0	I2C	购买链接
101020072	Grove - Barometer Sensor(BMP180)	12C	购买链接
104030010	Grove - Blue LED	I/O	购买链接

SKU	名称	接口	购买链接
101020003	Grove - Button	I/O	购买链接
111020000	Grove - Button(P)	I/O	购买链接
107020000	Grove - Buzzer	I/O	购买链接
104030006	Grove - Chainable RGB LED	I2C	购买链接
101020030	Grove - Digital Light Sensor	I2C	购买链接
103020024	Grove - Finger-clip Heart Rate Sensor	I2C	购买链接
101020082	Grove - Finger-clip Heart Rate Sensor with shell	I2C	购买链接
113020003	Grove - GPS	UART	购买链接
104030007	Grove - Green LED	I/O	购买链接
103020013	Grove - I2C ADC	I2C	购买链接
103020006	Grove - I2C Hub	I2C	购买链接
101020079	Grove - IMU 10DOF	I2C	购买链接
101020080	Grove - IMU 9DOF v2.0	I2C	购买链接
101020040	Grove - IR Distance Interrupter	I/O	购买链接
104030011	Grove - OLED Display 0.96''	I2C	购买链接
104030008	Grove - OLED Display 1.12"	I2C	购买链接
104030005	Grove - Red LED	I/O	购买链接
103020005	Grove - Relay	I/O	购买链接
316010005	Grove - Servo	I/O	购买链接
101020023	Grove - Sound Sensor	Analog	购买链接
101020004	Grove - Switch(P)	I/O	购买链接
101020015	Grove - Temperature Sensor	Analog	购买链接
101020019	Grove - Temperature&Humidity Sensor Pro	Analog	购买链接

7/16/2019

Cape for BBG

在您开始自己的项目时,可能需要一些扩展板。 BBG 已经有许多扩展板,包括液晶显示器,电机驱动器以及 HDMI扩展等。以下是其中的一些推荐。

Grove Cape	Motor Bridge Cape	HDMI Cape

- FAQ
 - 1. BBG 1 和 BBG 2 有何不同?

我们在2016年更新了Beaglebone Green的eMMC。因此,以前的BBG1固件在BBG2上无法使用,但新的 固件在BBG1和BBG2可以正常使用。

参考

有很多参考资料可以帮助您获得有关 BBG 的更多信息。

- BeagleBoard Main Page
- BeagleBone Green info at BeagleBoard page
- BeagleBoard Getting Started
- Troubleshooting
- Hardware documentation
- Projects of BeagleBoard
- CE certification of BBG
- FCC certification of BBG

资料下载

- BEAGLEBONE_GREEN SRM(v1a)(pdf)
- BEAGLEBONE_GREEN Schematic(pdf)
- BEAGLEBONE_GREEN Schematic(OrCAD)
- BEAGLEBONE_GREEN PCB(OrCAD)