MA51T12B 用户手册 V1. 2

12 通道电容式触控按键专用芯片

上海中基国威电子股份有限公司

SHANGHAI SINOMICON ELECTRONICS CO., LTD

目录

1	产品简述	3 -
2	产品特性	4
3	引脚定义	5
4	芯片配置方式	6
	4.1 IIC接口	6
	4.1.1 START 和STOP 条件	
	4.1.2 数据位	6 ·
	4.1.3 从机地址设置	
	4.1.4 数据传输	
	4.1.5 寄存器操作方式	
	4.2 寄存器	7
	4.2.1 寄存器列表	7
	4.2.2 寄存器说明	7 ·
	4.3 操作流程	12 -
5	典型应用	
	5.1 应用原理图	- 13
	5.2 相关配置	
6	电气特性	
	6.1 极限参数	- 15
	6.2 工作条件	
	6.3 DC 特性	
7	封装信息	16

1 产品简述

MA51T12B 是一款电容传感专用芯片,最多支持 12 个电容检测通道,通过 IIC 接口可方便的进行参数 和工作模式配置,以及进行键值读取等。应用方案实现外围电路精简,开发简单,既为用户降低了整体 BOM 成本,也为用户实现小型化产品提供了必要条件。

MA51T12B 适用于各种电容传感应用方案,例如触控按键,水位检测,接近手势识别等。产品支持低功耗睡眠唤醒,睡眠工作电流低至 10uA,可以满足绝大多数电池供电设备应用。产品出色的抗干扰性能使产品可以适应大部分的恶劣应用环境,特别是在触控按键应用领域中,产品的防水、防辐射干扰,以及电流注入测试等方面的性能表现突出,得到广大用户的一致认可。

2 产品特性

▶ 触控

- O 12个电容检测通道,外围电路极简
- O IIC 通信接口用于键值读取和工作参数配置
- O 每个按键灵敏度单独可调
- O 低功耗模式工作电流小于 10uA, 支持触摸唤醒
- O 支持触摸中断唤醒上位机,IIC通讯在不丢通讯数据的情况下可直接唤醒芯片

▶ 工作条件

- O VDD 工作电压范围 2.2~5.5V
- O 工作温度范围 -40~85℃

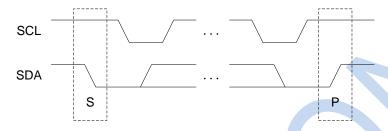
> 典型封装

O TSSOP20 QFN20

3 引脚定义

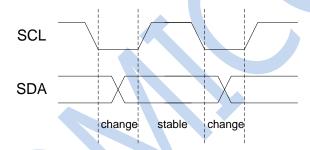
TK1	1	20	I2C_EN
TK12	2	19	INT
TK2	3	18	SDA
ТК3	4	17	SCL
VSS	5	16	ID_SEL
TK5	6	15	VDD
TK6	7	14	TK11
TK4	8	13	сх
TK7	9	12	ISPCK/TK10
TK8	10	11	ISPD/TK9

TSSOP20


符号	描 述	类型	备注
VDD	电源	P	工作范围 2.2~5.5V
VSS	地	P	
TK1~12	电容检测通道 1~12	A	_
CX	积分电容	A	接 2~33nf 电容
SCL	IIC 时钟线	I	内部 10K 弱上拉
SDA	IIC 数据线	IO	内部 10K 弱上拉
I2C_EN	IIC 片选信号	I	低电平使能,高电平禁止
INT	中断输出	0	_
ID SEL	从机地址选择	Ţ	接 VSS,从机地址 0X68
ID_SEL	从似即面扣顶 排	1	接 VDD,从机地址 0X78
ISPCK	编程时钟管脚	I	复用编程模式管脚,开发阶段建议
ISPD	编程数据管脚	IO	保留焊点用于升级使用

4 芯片配置方式

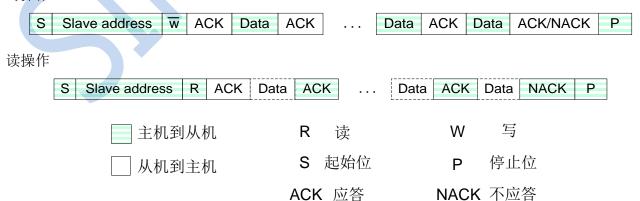
4.1 IIC接口


4.1.1 START和STOP条件

SCL 为高电平时, SDA 的下降沿代表 start(S)位, SDA 的上升沿代表 stop(P)位。

4.1.2 数据位

数据位只允许在 SCL 为低电平时改变 SDA, SCL 为高电平时 SDA 必须保持电平稳定。



4.1.3 从机地址设置

ID_SEL 接地,从机地址为 0X68; ID_SEL 接 VDD,从机地址为 0X78。

4.1.4 数据传输

写操作

4.1.5 寄存器操作方式

通过 IIC 对本芯片寄存器进行操作。

实例写: 寄存器 0X02 写 0X55, 寄存器 0X03 写 0XAA

,	从机地址+W	۸۵۷	寄存器地址	ACK	Data	A C K	Data	ACK/NACK	D	
٦	(0XD0)	ACK	0X02	ACK	(0X55)	ACK	(0XAA)	ACK/NACK	Г	

实例读: 读取寄存器 0X02 和 0X03

s	从机地址+W	۸CK	寄存器地址	ACK	D
	(0XD0)	ACK	0X02		_

s	从机地址+R (0XD1)	ACK	读取0X55	ACK	读取0XAA	NACK	Р
---	------------------	-----	--------	-----	--------	------	---

主机到从机 从机到主机

4.2 寄存器

4.2.1 寄存器列表

寄存器	地址	备注
CH1_2_SEN	0x02	灵敏度配置寄存器
CH3_4_SEN	0x03	灵敏度配置寄存器
CH5_6_SEN	0x04	灵敏度配置寄存器
CH7_8_SEN	0x05	灵敏度配置寄存器
CH9_10_SEN	0x06	灵敏度配置寄存器
CH11_12_SEN	0x07	灵敏度配置寄存器
INT_MOD	0x08	中断输出配置寄存器
SYS_CON	0x09	系统寄存器
-	0x0A	保留
	0x0B	保留
CH1_8_PD	0x0C	通道1到8使能寄存器
CH9_12_PD	0x0D	通道9到12使能寄存器
	0X0E	保留
	0X0F	保留
CH1_4_OUT	0X10	通道1到4按键响应输出
CH5_8_OUT	0X11	通道5到8按键响应输出
CH9_12_OUT	0X12	通道9到12按键响应输出

4.2.2 寄存器说明

通道1和2灵敏度配置寄存器 CH1_2_SEN (地址 0X02)

Bit7	Bit6-4	Bit3	Bit2-0
RW-1	RW-010	RW-1	RW-010
CH2_HL	CH2_S	CH1_HL	CH1_S

CH2_HL: 通道2高低灵敏度门限配置 Bit7 0: HS=0.8*CH2_S; LS=1.2*CH2_S 1: HS=0.7*CH2_S; LS=1.3*CH2_S CH2 S: 通道 2 灵敏度配置 Bit6-4 000: 32 100: 16 101: 12 001: 28 010: 24 110: 08 011: 20 111: 04 CH1_HL: 通道 1 高低灵敏度门限配置 Bit3 0: HS=0.8*CH1_S; LS=1.2*CH1_S 1: HS=0.7*CH1_S; LS=1.3*CH1_S CH1_S: 通道 1 灵敏度配置 Bit2-0 000: 32 100: 16 001: 28 101: 12 010: 24 110: 08 011: 20 111: 04

通道3和4灵敏度配置寄存器CH3_4_SEN(地址0X03)

Bit7	Bit6-4	Bit3	Bit2-0
RW-1	RW-010	RW-1	RW-010
CH4_HL	CH4_S	CH3_HL	CH3_S
Bit7	CH4_HL: 通道 4 高低灵敏度门限配置		

0: HS=0.8*CH4_S; LS=1.2*CH4_S 1: HS=0.7*CH4_S; LS=1.3*CH4_S CH4 S: 通道2灵敏度配置 Bit6-4 000: 32 100: 16 101: 12 001: 28 010: 24 110: 08 011: 20 111: 04 CH3_HL: 通道3高低灵敏度门限配置 Bit3 0: HS=0.8*CH3_S; LS=1.2*CH3_S 1: HS=0.7*CH3_S; LS=1.3*CH3_S CH3_S: 通道2灵敏度配置 Bit2-0 000: 32 100: 16 001: 28 101: 12 010: 24 111: 04 110: 08 011: 20

通道5和6灵敏度配置寄存器CH3_4_SEN(地址0X04)

Bit/	B1t6-4	Bit3	Bit2-0		
RW-1	RW-010	RW-1	RW-010		
CH6_HL	CH6_S	CH5_HL	CH5_S		
Bit7 CH6_HL: 通道 6 高低灵敏度门限配置					

0: HS=0.8*CH6_S; LS=1.2*CH6_S 1: HS=0.7*CH6_S; LS=1.3*CH6_S CH6_S: 通道6灵敏度配置 Bit6-4 000: 32 100: 16 101: 12 001: 28 010: 24 110: 08 011: 20 111: 04 CH5_HL: 通道 5 高低灵敏度门限配置 Bit3 0: HS=0.8*CH5_S; LS=1.2*CH5_S 1: HS=0.7*CH5_S; LS=1.3*CH5_S Bit2-0 CH5_S: 通道5灵敏度配置 000: 32 100: 16 001: 28 101: 12 010: 24 110: 08 011: 20 111: 04

通道7和8灵敏度配置寄存器 CH7_8_SEN (地址 0X05)

Bit7	Bit6-4	Bit3	Bit2-0
RW-1	RW-010	RW-1	RW-010
CH8_HL	CH8_S	CH7_HL	CH7_S

Bit7 CH8_HL: 通道 8 高低灵敏度门限配置

0: HS=0.8*CH8_S; LS=1.2*CH8_S

1: HS=0.7*CH8_S; LS=1.3*CH8_S

Bit6-4 **CH8_S:** 通道 8 灵敏度配置

Bit3 CH7 HL: 通道7高低灵敏度门限配置

0: HS=0.8*CH7_S; LS=1.2*CH7_S

1: HS=0.7*CH7_S; LS=1.3*CH7_S

Bit2-0 **CH7_S:** 通道 7 灵敏度配置

通道 9 和 10 灵敏度配置寄存器 CH9_10_SEN (地址 0X06)

Bit7	Bit6-4	Bit3	Bit2-0
RW-1	RW-010	RW-1	RW-010
CH10 HL	CH10 S	CH9 HL	CH9 S

Bit7 **CH10 HL:** 通道 10 高低灵敏度门限配置

0: HS=0.8*CH10_S; LS=1.2*CH10_S

1: HS=0.7*CH10_S; LS=1.3*CH10_S

Bit6-4 **CH10_S:** 通道 10 灵敏度配置

000: 32 100: 16 001: 28 101: 12

010: 24 110: 08 011: 20 111: 04

Bit3 CH9_HL: 通道 9 高低灵敏度门限配置

0: HS=0.8*CH9_S; LS=1.2*CH9_S

1: HS=0.7*CH9_S; LS=1.3*CH9_S

Bit2-0 **CH9_S:** 通道 9 灵敏度配置

000: 32 100: 16 001: 28 101: 12

010: 24 110: 08 011: 20 111: 04

通道 11 和 12 灵敏度配置寄存器 CH11_12_SEN (地址 0X07)

Bit7	Bit6-4	Bit3	Bit2-0
RW-1	RW-010	RW-1	RW-010
CH12 HL	CH12 S	CH11 HL	CH11 S

Bit7 CH12 HL: 通道 12 高低灵敏度门限配置

0: HS=0.8*CH12 S; LS=1.2*CH12 S

1: HS=0.7*CH12_S; LS=1.3*CH12_S

Bit6-4 CH12_S: 通道 12 灵敏度配置

000: 32 100: 16 001: 28 101: 12

010: 24 110: 08 011: 20 111: 04

Bit3 CH11_HL: 通道 11 高低灵敏度门限配置

0: HS=0.8*CH11_S; LS=1.2*CH11_S

1: HS=0.7*CH11_S; LS=1.3*CH11_S

Bit2-0 **CH11_S:** 通道 11 灵敏度配置

000: 32 100: 16 001: 28 101: 12

以通道1灵敏度设置为例子介绍一下寄存器设置的目的进行一下说明:

CH1_S 通道 1 灵敏度设置,越高越灵敏(对应地 CH1_S 设置为 000 时,对应灵敏度为 32,是最灵敏的)设置 CH1_HL 影响通道 1 的出中断的达到的门限值,当 CH1_HL 设置为 0 时, HS=0.8*CH1_S; LS=1.2*CH1_S。高灵敏度产生 CH1_OUT 输出 2'b11(或高灵敏度按键中断),按键变化量只需达到配置灵敏度 80%即可发生。低灵敏度产生 CH1_OUT 输出 2'b01(或低灵敏度按键中断),按键变化量需要达到灵敏度设置的 120%才可发生。

中断输出配置寄存器 INT MOD (地址 0X08)

Bit7-5	Bit4-3	Bit2-0
_	RW-00	_
	INT_MOD	_

Bit7-5 保留

Bit4-3 INT_MOD: 中断输出配置(根据 CHx_HL 来确定高低灵敏度值门限是多少)

00: 按键变化量达到中灵敏度值(CHx S)或高灵敏值时产生中断

01: 按键变化量达到中灵敏度值(CHx S)或高灵敏值或低灵敏度值时产生中断

10: 按键变化量达到中灵敏度值(CHx_S)或高灵敏值时产生中断

11: 按键变化量达到高灵敏值时产生中断

Bit2-0 保留

系统寄存器 SYS CON (地址 0X09)

Bit7-3	Bit2	Bit1-0
_	RW-0	R_11
_	IDLE	

Bit7-3 保留

Bit2 IDLE: 低功耗模式

0: 非功耗模式

1: 进入低功耗模式,进入后硬件自动清零,IIC 查询后进入高功耗模式,请注意操作

Bit1-0 保留,固定写 2'b11

通道1到8使能寄存器CH1_8_PD(地址0X0C)

	H1 PD
210 210 210 210 210	RW-0
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 B	Bit0

Bit7-0 CH8 PD~ CH1 PD: 通道使能和禁止控制寄存器

0: 使能 1: 禁止

通道9到12使能寄存器CH9_12_PD(地址0X0D)

Bit7	Bit3	Bit2	Bit1	Bit0
_	RW-0	RW-0	RW-0	RW-0
_	CH12_PD	CH11_PD	CH10_PD	CH9_PD

Bit7-0 CH9 PD~ CH12 PD: 通道使能和禁止控制寄存器

0: 使能

1: 禁止

通道1到4按键响应输出CH1_4_OUT(地址0X10)

CH4 OUT	CH3 OUT	CH2 OUT	CH1 OUT
RW-00	RW-00	RW-00	RW-00
Bit7-6	Bit5-4	Bit3-2	Bit1-0

Bit7-6 CH4_OUT: 通道 4 按键输出

00: 无按键

01: 低灵敏度按键输出

10: 中灵敏度按键输出

11: 高灵敏度按键输出

Bit5-4 CH3_OUT: 通道 3 按键输出

00: 无按键

01: 低灵敏度按键输出

10: 中灵敏度按键输出

11: 高灵敏度按键输出

Bit3-2 CH2 OUT: 通道 2 按键输出

00: 无按键

01: 低灵敏度按键输出

10: 中灵敏度按键输出

11: 高灵敏度按键输出

Bit1-0 CH1_OUT: 通道 1 按键输出

00: 无按键

01: 低灵敏度按键输出

10: 中灵敏度按键输出

11: 高灵敏度按键输出

通道 5 到 8 按键响应输出 CH5_8_OUT (地址 0X11)

Bit7-6	Bit5-4	Bit3-2	Bit1-0
RW-00	RW-00	RW-00	RW-00
CH8_OUT	CH7_OUT	CH6_OUT	CH5_OUT

Bit7-6 CH8_OUT: 通道 8 按键输出

00: 无按键

01: 低灵敏度按键输出

10: 中灵敏度按键输出

11: 高灵敏度按键输出

Bit5-4 CH7_OUT: 通道 7 按键输出

00: 无按键

01: 低灵敏度按键输出

10: 中灵敏度按键输出

11: 高灵敏度按键输出

Bit3-2 CH6_OUT: 通道 6 按键输出

00: 无按键

01: 低灵敏度按键输出

10: 中灵敏度按键输出

11: 高灵敏度按键输出

Bit1-0 CH5 OUT: 通道 5 按键输出

00: 无按键

01: 低灵敏度按键输出

10: 中灵敏度按键输出

11: 高灵敏度按键输出

通道9到12按键响应输出CH9_12_OUT(地址0X12)

Bit7-6 Bit5-4		Bit3-2	Bit1-0
RW-00 RW-00		RW-00	RW-00
CH12_OUT	CH11_OUT	CH10_OUT	CH9_OUT

Bit7-6 CH12_OUT: 通道 12 按键输出

00: 无按键

01: 低灵敏度按键输出

10: 中灵敏度按键输出

11: 高灵敏度按键输出

Bit5-4 **CH11_OUT**: 通道 11 按键输出

00: 无按键

01: 低灵敏度按键输出

10: 中灵敏度按键输出

11: 高灵敏度按键输出

Bit3-2 CH10_OUT: 通道 10 按键输出

00: 无按键

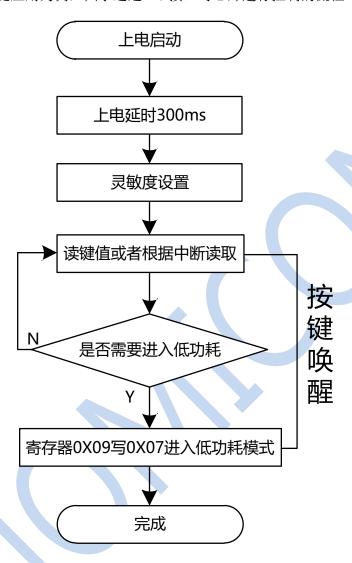
01: 低灵敏度按键输出

10: 中灵敏度按键输出

11: 高灵敏度按键输出

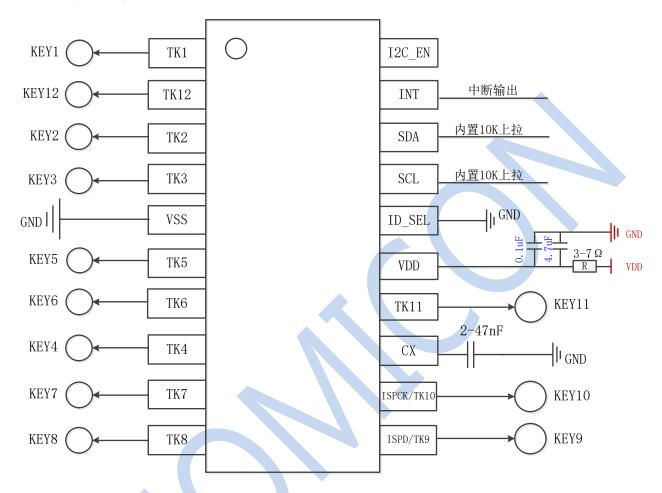
Bit1-0 CH9 OUT: 通道 9 按键输出

00: 无按键


01: 低灵敏度按键输出

10: 中灵敏度按键输出

11: 高灵敏度按键输出


4.3 操作流程

以低功耗触控按键应用为例,图示通过 IIC 接口对芯片进行控制的流程。

5 典型应用

5.1 应用原理图

如果静电环境较差,建议在靠近 TK 管脚处串接 200 欧姆的电阻。

注意:

- 1: 芯片 VDD 接入加入 RC 滤波,有效增强触摸特性,R 推荐值为 3~7 欧姆,VDD 与 GND 之间推荐接 4.7u 和 0.1u 的电容两个电容并联,电容需尽量靠近芯片管脚。电源地在条件允许的情况下请大于20mil。
- 2: 使用过程中如果人手指直接触摸按键键盘会导致按键误触发,由于人体 50HZ 的工频会直接影响按键正常响应,建议在使用按键时在按键与手指接触之间加绝缘的亚克力和玻璃片(在条件允许下请使用小于 5MM 厚度的亚克力或者玻璃)。

5.2 相关配置

- 1: 在不同的应用下,需对系统进行不同的灵敏度配置,才能得到更好的按键体验,同样的布线和生产工艺生产出来的不同板子,按键灵敏度可统一设置,无需区分。
- 2: 触摸键至芯片触摸管脚走线越细,表现出触摸效果越好。另外需注意的是触摸键连线与其他触 摸键连接线在条件允许的情况下请大于 20mil(0.5mm),但是间隔大些更好。并且触摸键连线尽量远离翻 转频次较高的信号线。

3: 触摸键和面板(亚克力或玻璃)贴合面积越大越紧,按键效果越好,在条件允许的情况下越大越好。为避免按键间影响,触摸键间隔请大于 60mil(1.5mm)

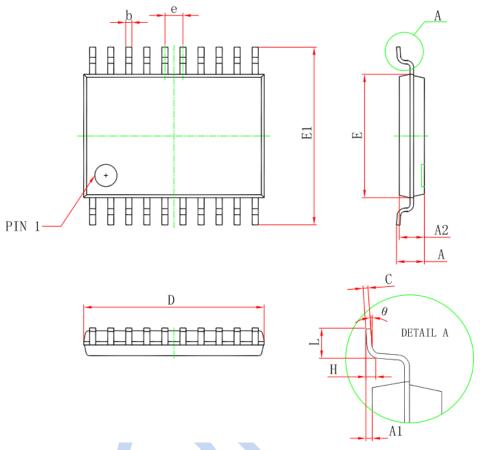
6 电气特性

6.1 极限参数

存储温度 T _{STG}	55°C ~ 125°C
供电极限电压 V _{DD} -V _{SS}	0.3V ~ 6.5V
输入极限电压 V _{IN}	V_{SS} -0.3 $V \sim V_{DD}$ +0.3 V
VDD 最大承载电流 I _{VDD}	100mA
VSS 最大承载电流 I _{VSS}	100mA

6.2 工作条件

符号	描述	最小值	最大值	单位
VDD	工作电压	2.0	5.5	V
T_{A}	工作温度	-40	85	°C


6.3 DC 特性

典型值测试基本条件: T_A=25℃, VDD=5V

兴生直防风垒冲水门: TA 25 C, VDD-5 V						
符号	描述	最小值	典型值	最大值	单位	条件
VDD	供电电压	2.2	_	5.5	V	
I_{DDH}	工作电流		1.5	_	mA	_
I_{DDS}	待机电流	_	10	_	uA	_
$V_{\rm IL}$	输入低电压	0	_	0.3 VDD	V	SCHMITT 输入特性
V_{IH}	输入高电压	0.7 VDD		VDD	V	SCHMITT 输入特性
I_{LK}	输入漏电流			<u>±1</u>	uA	_
V_{OL}	输出低电压	VSS+0.6			V	I _{OL} 大于 10mA
V _{OH}	输出高电压			VDD-0.7	V	I _{OH} 大于 10mA

7 封装信息

TSSOP20

	公制 (mm)		英制(inch)
标号	MIN	MAX	MIN	MAX
D	6.400	6.600	0.252	0.259
Е	4.300	4.500	0.169	0.177
b	0.190	0.300	0.082	0.099
c	0.090	0.200	0.004	0.008
E1	6.250	6.550	0.246	0.258
A		1.200		0.047
A2	0.800	1.000	0.031	0.039
A1	0.050	0.150	0.002	0.006
e	0.65(I	BSC)	0.026	(BSC)
L	0.500	0.700	0.020	0.028
Н	0.25(7	0.25(TYP)		ГҮР)
θ	1 °	7°	1 °	7°