ALUMINUM ELECTROLYTIC CAPACITORS SPECIFICATION SHEET

CUSTOMER PART No.		
Rubycon PART No.	YXA SERIES (PET sleeve type)
DRAWING No.	REE – 033812	ISSUE No.
ISSUE DATE	10 JANUARY 2008	

1938-1, NISHIMINOWA, INA-SHI, NAGANO-KEN, JAPAN TEL No. 0265-72-7116 FAX No. 0265-73-3380

	SEIJI IWAI
DESIGN	Sentan
	TETSUYA MIZU
CHECK	Hongaha
	YOSHINORI SASAKI
APPROVAL	7 Goed

1.Scope.

This specification covers polarized aluminum electrolytic capacitors with non-solid electrolyte for use in electronic equipments .

Reference Standard

JIS C 5141 (1991) and JIS C 5102 (1994) methods for testing.

3. Operating Temperature Range

-55°C to +105°C (6.3 to 100 V.DC.), -40°C to +105°C (160 to 250 V.DC.), -25°C to +105°C (350 to 450 V.DC.)

4. Performance

Refer to Table-1

5. Style and Numbering System

(1) Style CE 04 (Radial Leaded)

(2) Numbering System Case size Rated Nominal Option Lead Series Tolerance Forming Voltage Capacitance code **YXA** M **FFC**

6. Marking

Unless otherwise specified, capacitor shall be clearly marked the following items on its body.

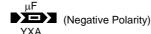
Sleeve color: Black Lettering color: White

(1) Trade mark

(2) Rated Voltage

(3) Nominal Capacitance

(4) Polarity


(5) Series

(6) Lot Number

(7) Maximum Operating Temperature

(8) PET sleeve mark

Rubycon

105°C PFT

7. Vent

On capacitors whose diameter is 6.3mm and greater, a safety vent shall be provided.

8. Notes on use of aluminum electrolytic capacitors

(1) Charge and discharge

Do not use for the circuit that repeats quick charge or discharge.

(2) External stress

Do not apply excessive force of pushing, pulling bending, and/or twisting to the main body, lead wire and terminals.

(3) Heat resistance at soldering process

In the soldering process of PC board with Capacitors mounted, secondary shrinkage or crack of sleeve may be observed when soldering temperature is too high and /or soldering time is too long.

If lead wire of other components or pattern of double sided PC board touches the capacitor, the similar failure may be also originated at pre-heating, heating at hardening process of adhesive and soldering process.

(4) Insulation and PC board mounting

Sleeve is for marking purpose only.

It is not recognized as insulation materials.

When double sided PC board is employed, note that it could cause a short circuit if lead wire of other components or pattern of double sided PC board touches capacitor. Please avoid circuit pattern runs underneath capacitor.

In addition, case and cathode terminal are not insulated.

(5) Adhesives and coating materials

Do not use the adhesives and coating materials that contain halogenated organic solvents or chloroprene as polymer.

(6) Storage

Keep at a normal temperature and humidity. During a long storage time, leakage current will be increased. To prevent heat rise or any trouble that high leakage current possibly causes, voltage treatment is recommended for the capacitors that have been stored for a long time.

.<Storage Condition>

*Aluminum electrolytic capacitors should not be stored in high temperatures or where there is a high level of humidity. The suitable storage condition is 5°C-35°C and less than 75% in relative humidity.

*Aluminum electrolytic capacitors should not be stored in damp conditions such as water, saltwater spray or oil spray.

*Do not store alumínum electrolytic capacitors in an environment full of hazardous gas (hydrogen sulfide, sulfurous acid gas, nitrous acid, chlorine gas, ammonia or bromine gas).

*Aluminum electrolytic capacitors should not be stored under exposure to ozone, ultraviolet rays or radiation.

Rubycon
RUBYCON CORPORATION

YXA	SERIE	S

*Fumigation of wooden pallets before ship *Existence of components or parts that co	odes, aluminum cases and terminal surface when the following conditions exist.
(8) PC board cleaning after soldering Please consult us when cleaning is sub	ected.
◆ Guide to application except the above are des EIAJ RCR-2367C: "Safety Application Guide for Published by Japan Elect	scribed in our catalog and EIAJ RCR-2367C or fixed aluminum electrolytic capacitors for use in electronic equipment." ronics and Information Technology Industries Association.
	Rubycon
YXA SERIES	RUBYCON CORPORATION

	ITEMS					PER	FORMA	ANCE					
	Rated Voltage(WV) Surge Voltage (SV)	WV(V.DC)	6.3	10	16	25	35	50	63	100	160	200	
	Cargo voltago (Ov)	SV(V.DC)	8	13	20	32	44	63	79	125	200	250	
		MA (4 / P.O.)	250	350	400	450						<u>. </u>	
		SV(V.DC)	300	400	450	500							
		(1.20)											
	Nominal Capacitance (Tolerance)	<criteria> 0.1 to 22000μF(±2</criteria>	0%)										
		<condition></condition>											
		Measuring Freq Measuring Volta Measuring Tem	ige -	: Not	t more t		Vrms +	1.5 to 2	.0V.DC				
3	Leakage Current	<condition> The rated volta reach the rated voltage the current value <criteria> • 6.3 to 100V. DC I=0.01CV or 3</criteria></condition>	oltage has re shall n	within on ached to excend the excent of excenders and achieved a contract of the excent of the excen	he minu he rated ed value es)	ute and d voltag e calcula	the leal e acros	kage cu s a 100	rrent sh 0 ±10 Ω	all be m 2 series	neasure	d at follow	ving
		• 160 to 450V. D0 (after 1 minute I=0.1CV +40μ	(after 5minutes) I=0.03CV +15μA (CV≤1000) I=0.02CV +25μA (CV>1000)										
		I=0.04CV +10											
		I=0.04CV +10 where I:	Nomi	ge curre nal capa I voltage	acitance	in μF.							
	Dissipation Factor	I=0.04CV +10 where I:	Nomi	nal capa	acitance	in μF.							
	Dissipation Factor (tan8:Tangent of loss angle)	I=0.04CV +10 where I: C: V:	Nomi	nal capa	acitance	in μF.	35	50	63	100	1		
	(tanδ:Tangent of	VV(V.DC)	Rated	nal capa I voltage	acitance e in V.D	in μF. C.	35 0.14	50 0.12	63	100	1		
	(tanδ:Tangent of	I=0.04CV +10 where	Nomin Rated	nal capa I voltage	acitance e in V.D	in μF. C. 25							
	(tanδ:Tangent of	I=0.04CV +10 where	Rated 6.3 0.26	nal capa I voltage 10 0.22	16 0.18	25 0.16	0.14	0.12					
	(tanδ:Tangent of	I=0.04CV +10 where	6.3 0.26 160 0.20	10 0.22 200 0.20 citance	16 0.18 250 0.20	25 0.16 350 0.24	0.14 400 0.24	0.12 450 0.24	0.10	0.08	0.02 to	the liste	ed v

5 Terminal Strength

<Condition>

Tensile Strength of Terminals

The body of capacitor shall be fixed and the tensile force of following table shall be applied to the terminal in lead out direction of the terminal for 10±1 seconds.

Bending Strength of Terminals

The body of capacitor shall be held in such a way that the regular lead-out axis of lead wire terminal becomes vertical. The weight of following table shall be suspended from the end of terminal. In this condition, after the body of sample is bent through 90 degrees, it shall be returned to the original position. Next the body shall be reversibly bent through 90 degrees and again returned to the original position.

Diameter of lead wire	Tensile force N{kgf}	Bending force N{kgf}
0.5mm and less	5{0.51}	2.5{0.25}
Over 0.5mm to 0.8mm incl	10{1.0}	5 {0.51}

<Criteria>

Notable changes shall not be found, as breakage or looseness in the terminal.

6 Temperature Coefficient and Drift

<Condition>

STEP	Testing Temperature (°C)	Time
1	20±2	Time to reach thermal equilibrium
2	-40±3	//
3	-25±3	//
4	20±2	//
5	105±2	2 hrs.
6	20±2	Time to reach thermal equilibrium

Capacitance, D.F. and Impedance shall be measured at 120Hz.

Rated voltage 160 to 450 WV : Except Step 2.

<Criteria>

Jilleria>		
STEP 2,3	Impedance Ratio	The value of ratio to STEP 1 not more than value of following table
STEP 5	Capacitance Change	6.3 to 100WV : Within $\pm 25\%$ of the value of STEP 1 160 to 450WV : Within $\pm 20\%$ of the value of STEP 1
	Dissipation Factor	Not more than the specified value
	Leakage Current	Not more than 8 times the specified value
STEP 6	Capacitance Change	Within ±10% of the value of STEP 1
	Dissipation Factor	Not more than the specified value
	Leakage Current	Not more than the specified value

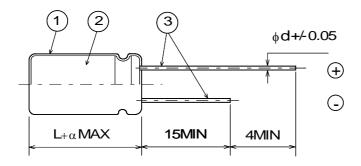
WV(V.DC)	6.3	10	16	25	35	50	63	100	160
Z(-25°C)/Z(+20°C)	4	3	2	2	2	2	2	2	3
Z(-40°C)/Z(+20°C)	8	6	4	4	3	3	3	3	_

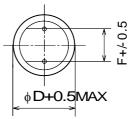
WV(V.DC)	200	250	350	400	450
Z(-25°C)/Z(+20°C)	3	3	6	6	6
Z(-40°C)/Z(+20°C)	_	_	_	_	_

7	Load Life Test	(with maximum ripple cur	ed the rated voltage continuously through 1000 Ω series proceent) at 105 \pm 2°C for following test period. After the test a 2 hours, and the capacitor shall meet following requirements.					
		Case dia	Life Time					
		φD≤8	1000 +48					
		φD=10	2000 +72 0					
		φD≥12.5	3000 +72					
		<criteria></criteria>	U U					
		Leakage Current	Not more than the specified value					
		Capacitance Change	Within ±25% of the initial value					
		Dissipation Factor	Not more than 200% of the specified value					
		Appearance	Notable changes shall not be found					
			ion for 1 to 2 hours and the capacitor shall meet following redgement, the capacitors shall be subjected to voltage treatments. Not more than the specified value					
		Capacitance Change	Within ±25% of the initial value					
		Dissipation Factor	Not more than 200% of the specified value					
		Appearance	Notable changes shall not be found					
		<condition> Capacitors shall be applied the surge voltage through a $(100\pm50)/C_R$ [$k\Omega$] resistor in series for 30 ± 5 seconds in every 6 ± 0.5 minutes at 15 to 35°C. Procedure shall be repeated 1000 times. Then the capacitors shall be left under normal humidity for 1 to 2 hours before measurement. [C_R: Nominal Capacitance (μF)]</condition>						
)	Surge Voltage	Capacitors shall be applied for 30±5 seconds in ever Then the capacitors shall	/ 6 ± 0.5 minutes at 15 to 35°C. Procedure shall be repeated 1 be left under normal humidity for 1 to 2 hours before measur	000 times.				
)	Surge Voltage	Capacitors shall be applied for 30±5 seconds in every Then the capacitors shall [C _R : Nominal Capacitane	/ 6 ± 0.5 minutes at 15 to 35°C. Procedure shall be repeated 1 be left under normal humidity for 1 to 2 hours before measur	000 times.				
•	Surge Voltage	Capacitors shall be applied for 30±5 seconds in every Then the capacitors shall [C _R : Nominal Capacitant Capa	$(6\pm0.5~{\rm minutes~at}~15~{\rm to}~35^{\circ}{\rm C}.$ Procedure shall be repeated 1 be left under normal humidity for 1 to 2 hours before measurce ($\mu{\rm F}$)]	000 times.				
)	Surge Voltage	Capacitors shall be applied for 30±5 seconds in every Then the capacitors shall [C _R : Nominal Capacitant Capa	$(6\pm0.5 \text{ minutes at } 15 \text{ to } 35^{\circ}\text{C}. \text{ Procedure shall be repeated } 1)$ be left under normal humidity for 1 to 2 hours before measure (μF)]	000 times.				
)	Surge Voltage	Capacitors shall be applied for 30±5 seconds in every Then the capacitors shall [C _R : Nominal Capacitant Capacitant Capacitant Capacitant Capacitance Change Dissipation Factor Appearance	 (6±0.5 minutes at 15 to 35°C. Procedure shall be repeated 1 be left under normal humidity for 1 to 2 hours before measure (μF)] Not more than the specified value Within ±15% of the initial value Not more than the specified value Not more than the specified value Notable changes shall not be found 	000 times. ement.				
)	Surge Voltage	Capacitors shall be applied for 30±5 seconds in every Then the capacitors shall [C _R : Nominal Capacitant Capacitant Capacitant Capacitant Capacitance Change Dissipation Factor Appearance	y 6±0.5 minutes at 15 to 35°C. Procedure shall be repeated 1 be left under normal humidity for 1 to 2 hours before measure (μF)] Not more than the specified value Within ±15% of the initial value Not more than the specified value	000 times.				
0	Surge Voltage Vibration Test	Capacitors shall be applied for 30±5 seconds in every Then the capacitors shall [C _R : Nominal Capacitant Criteria> Leakage Current Capacitance Change Dissipation Factor Appearance ◇This test simulates overvous always applied. <condition> Testing shall be done out Fix lead wire at a point not severe the capacitant Capacitance Change Dissipation Factor Appearance</condition>	Not more than the specified value Not more than the specified value Within ±15% of the initial value Not more than the specified value Notable changes shall not be found Itage at abnormal situations, and not be hypothesizing that in 3 AXIS for 2 hours each (total 6 hours) as below. ot more than 4mm from the body , use mounting device sep m and greater or with a length 25mm and longer.	000 times. ement.				

		<criteria></criteria>						
		Capacitance (During test)		from one e on frequen	nd to the ot			
		Capacitance Change	Within ±5%	of the initial	value			
		Appearance	Notable cha	nges shall r	not be found			
1	Solderability	<condition> Terminals of the capacitor s for 5 to 10 seconds and shall b and pulled out at the same spe <criteria> At least 3/4 of circumferent solder.</criteria></condition>	oe immersed in the	he solder ba	ath (235±5°C	c) and held f	for 2±0.5 seco	nds,
12	Resistance to Solder Heat	<condition> Terminals of the capacitor sl to 2.0mm from the body of cap Then the capacitors shall be before measurement.</condition>	acitor.					
		<criteria></criteria>	1					-1
		Leakage Current	Not more than	the specifie	d value			
		Capacitance Change	Within ±10% of	f the initial v	alue /			
		Dissipation Factor	Not more than	the specifie	d value			
		Appearance	Notable change	es shall not	be found			<u> </u>
3	Resistance to Damp Heat (Steady State)	Appearance Condition> Capacitor shall be stored in Then the capacitors shall be before measurement.	the ambient of 40	0±2°C and r	elative humi			
3		<condition> Capacitor shall be stored in the capacitors shall be before measurement. <criteria></criteria></condition>	the ambient of 40	D±2°C and r ormal temp	elative humi erature and			
13		<condition> Capacitor shall be stored in the capacitors shall be before measurement.</condition>	the ambient of 40 eleft under the n	0±2°C and rormal temp	elative humi erature and d value	normal hum		
13		<condition> Capacitor shall be stored in the capacitors shall be before measurement. <criteria></criteria></condition>	the ambient of 40	0±2°C and rormal temp	elative humi erature and d value % of the initi	normal hum		
3		<condition> Capacitor shall be stored in a Then the capacitors shall be before measurement. <criteria> Leakage Current</criteria></condition>	the ambient of 40 eleft under the not more than 6.3 to 100WV:	0±2°C and rormal tempormal tempormal tempormal tempormal the specifies Within ±15 : Within ±16	elative humi erature and d value % of the initi	normal hum		
3		<condition> Capacitor shall be stored in Then the capacitors shall be before measurement. <criteria> Leakage Current Capacitance Change</criteria></condition>	Not more than 6.3 to 100WV: 160 to 450WV	0±2°C and rormal temposteristics the specific Within ±15 : Within ±10 the specific when the specific the spec	elative humi erature and ed value % of the initi od value	normal hum		
3		Condition> Capacitor shall be stored in Then the capacitors shall be before measurement. Criteria> Leakage Current Capacitance Change Dissipation Factor Appearance (1)The maximum permissible right applied at maximum operating (2)The combined value of D.C. voltage and shall not be reversed.	Not more than 6.3 to 100WV: 160 to 450WV Not more than Notable change	0±2°C and rormal tempormal tempormal tempormal tempormal tempormal the specific within ±10 the specific es shall not the specific established es shall not the specific established establ	elative humi erature and d value % of the initi d value be found	ial value tial value t at 120Hz a	nidity for 1 to 2	
	(Steady State) Maximum Permissible	<condition> Capacitor shall be stored in Then the capacitors shall be before measurement. <criteria> Leakage Current Capacitance Change Dissipation Factor Appearance (1)The maximum permissible riapplied at maximum operating (2)The combined value of D.C.</criteria></condition>	Not more than 6.3 to 100WV: 160 to 450WV Not more than Notable change pele current is the g temperature. voltage and the preserved.	0±2°C and rormal tempormal tempormal tempormal tempormal tempormal the specific within ±10 the specific es shall not the specific established es shall not the specific established establ	elative humi erature and d value % of the initi d value be found	ial value tial value t at 120Hz a	nidity for 1 to 2	
	(Steady State) Maximum Permissible	<condition> Capacitor shall be stored in Then the capacitors shall be before measurement. <criteria> Leakage Current Capacitance Change Dissipation Factor Appearance (1)The maximum permissible ri applied at maximum operatin (2)The combined value of D.C. voltage and shall not be reversely capacitance (μF)</criteria></condition>	Not more than 6.3 to 100WV: 160 to 450WV Not more than Notable change pople current is the g temperature. voltage and the prise voltage. Hz) 60(50)	the specifie Within ±15 : Within ±10 the specifie es shall not e maximum peak A.C. v	elative humi erature and d value % of the inition of the inition d value be found A.C. curren oltage shall i	t at 120Hz a	and can be the rated	
	(Steady State) Maximum Permissible	Condition> Capacitor shall be stored in Then the capacitors shall be before measurement. Criteria> Leakage Current Capacitance Change Dissipation Factor Appearance (1)The maximum permissible ri applied at maximum operatin (2)The combined value of D.C. voltage and shall not be reverse experience of the capacitance (μF) Capacitance (μF) 0.1 to 1	Not more than 6.3 to 100WV: 160 to 450WV Not more than Notable change pople current is the gremperature. voltage and the price voltage. Hz) 60(50) 0.50	0±2°C and rormal tempormal	elative humi erature and d value % of the inition	ial value tial value t at 120Hz a not exceed t	and can be the rated 10k≤ 1.50	
	(Steady State) Maximum Permissible	<condition> Capacitor shall be stored in Then the capacitors shall be before measurement. <criteria> Leakage Current Capacitance Change Dissipation Factor Appearance (1)The maximum permissible ri applied at maximum operatin (2)The combined value of D.C. voltage and shall not be reversed to the property of the composition of the property o</criteria></condition>	Not more than 6.3 to 100WV: 160 to 450WV Not more than Notable change pople current is the g temperature. voltage and the prise voltage. Hz) 60(50)	the specifie Within ±15 : Within ±10 the specifie es shall not e maximum peak A.C. v	elative humi erature and d value % of the inition of the inition d value be found A.C. curren oltage shall i	t at 120Hz a	and can be the rated	
	(Steady State) Maximum Permissible	Condition> Capacitor shall be stored in Then the capacitors shall be before measurement. Criteria> Leakage Current Capacitance Change Dissipation Factor Appearance (1)The maximum permissible ri applied at maximum operatin (2)The combined value of D.C. voltage and shall not be reverse experience of the capacitance (μF) Capacitance (μF) 0.1 to 1	Not more than 6.3 to 100WV: 160 to 450WV Not more than Notable change pople current is the gremperature. voltage and the price voltage. Hz) 60(50) 0.50	0±2°C and rormal tempormal	elative humi erature and d value % of the inition	ial value tial value t at 120Hz a not exceed t	and can be the rated 10k≤ 1.50	
	(Steady State) Maximum Permissible	<condition> Capacitor shall be stored in Then the capacitors shall be before measurement. <criteria> Leakage Current Capacitance Change Dissipation Factor Appearance (1)The maximum permissible ri applied at maximum operatin (2)The combined value of D.C. voltage and shall not be reversed to the property of the composition of the property o</criteria></condition>	Not more than 6.3 to 100WV: 160 to 450WV Not more than Notable change pple current is the g temperature. voltage and the preservoltage. Hz) 60(50) 0.50 0.65	the specifie Within ±15 : Within ±15 : Within ±10 the specifie es shall not e maximum peak A.C. v 120 1.0 1.0	elative humierature and devalue % of the inition of	t at 120Hz anot exceed t	and can be the rated 10k≤ 1.50 1.50	

< Temperature Coefficient >


Ambient Temperature(°C)	105	85	65≥
Coefficient	1.0	1.7	2.1


♦Temperature coefficient shows a limit of ripple current exceeding the rated ripple current that can be passed through a capacitor at each temperature when the life expectancy of a capacitor becomes to be nearly equal with the lifetime at the rated maximum operating temperature.

♦ Use of aluminum electrolytic capacitor under ripple voltage with wide amplitude is equivalent to quick charge-discharge operation.

When ripple voltage with the amplitude over 70Vp-p is expected for the products with rated voltage over 100V, please contact us.

9. Diagram of dimensions. :unit mm

♦Table-2

φD		5	6.3	8	10	12.5	16	18
F		2.0	2.5	3.5	5.0	5.0	7.5	7.5
	фd	0.5	0.5	0.6	0.6	0.6	0.8	0.8
-	6.3 to 100WV			1.5 2.0				
α 160 to 450WV —					2	.0	•	

◆Table-3

1	Sleeve	P.E.T.
2	Case	Aluminum
3	Lead Wire	Tin plated

◆Table-4 Standard size, Maximum permissible ripple current

Size ϕ DXL(mm), Ripple Current(mA r.m.s./105°C,120Hz)

WV Cap	0.5		10		16		25		35	
(μF)	Size	Ripple								
22									5X11	64
33							5X11	69	5X11	77
47					5X11	80	5X11	84	5X11	100
100	5X11	96	5X11	105	5X11	130	6.3X11	140	6.3X11	170
220	5X11	160	6.3X11	175	6.3X11	220	8X11.5	240	10X12.5	300
330	6.3X11	210	6.3X11	235	8X11.5	270	10X12.5	335	10X12.5	400
470	6.3X11	275	8X11.5	295	8X11.5	375	10X12.5	440	10X16	525
1000	8X11.5	460	10X12.5	540	10X16	640	10X20	740	12.5X20	865
2200	10X20	775	10X20	860	12.5X20	1050	12.5X25	1230	16X25	1370
3300	10X20	985	12.5X20	1100	12.5X25	1300	16X25	1500	16X35.5	1680
4700	12.5X20	1150	12.5X25	1350	16X25	1650	16X31.5	1800	18X35.5	1920
6800	12.5X25	1480	16X25	1700	16X31.5	1900	18X35.5	2050		
10000	16X25	1700	16X35.5	1950	18X35.5	2070				
15000	16X35.5	2090	18X35.5	2180						
22000	18X40	2350								

Rubycon
RUBYCON CORPORATION

Size bDXL(mm).	Rinnle Cur	rent(mar m	s /105°C	120Hz)
SIZE WUNLIIIIII.	KIDDIE CUI	TEHRINA LIN	.5./ 105 C	. 1201121

WV	50		63		100		160		200	
(μF)	Size	Ripple								
0.1	5X11	1								
0.15	5X11	1.5								
0.22	5X11	2.5								
0.33	5X11	4								
0.47	5X11	7			5X11	8				
1	5X11	13			5X11	15				
2.2	5X11	20			5X11	21				
3.3	5X11	25			5X11	30			6.3X11	36
4.7	5X11	32			5X11	35	6.3X11	43	8X11.5	50
10	5X11	47	5X11	48	5X11	60	8X11.5	77	10X12.5	80
22	5X11	70	5X11	80	6.3X11	98	10X16	125	10X20	135
33	5X11	94	6.3X11	100	8X11.5	140	10X20	170	12.5X20	200
47	6.3X11	115	6.3X11	140	10X12.5	185	12.5X20	210	12.5X20	220
100	8X11.5	200	10X12.5	230	10X20	290	12.5X25	320	16X25	340
220	10X12.5	360	10X16	390	12.5X25	560	16X35.5	580	18X35.5	580
330	10X16	470	10X20	540	12.5X25	690	18X35.5	700		
470	10X20	600	12.5X20	700	16X25	880				
1000	12.5X25	1060	16X25	1200	18X40	985				
2200	16X35.5	1600	18X35.5	1650						
3300	18X35.5	1780								

WV	250		350		400		450	
Caρ (μF)	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple
0.47	6.3X11	8	6.3X11	8				
1	6.3X11	16	6.3X11	16	6.3X11	16	8X11.5	15
2.2	6.3X11	30	8X11.5	31	10X12.5	31	10X12.5	25
3.3	8X11.5	43	10X12.5	45	10X12.5	41	10X16	33
4.7	8X11.5	53	10X12.5	55	10X16	55	10X20	42
10	10X16	90	10X20	95	12.5X20	85	12.5X20	67
22	12.5X20	150	12.5X25	175	12.5X25	170	16X25	115
33	12.5X20	200	16X25	220	16X25	220	16X31.5	155
47	12.5X25	240	16X31.5	260	16X31.5	275	16X35.5	185
100	16X31.5	400	18X40	415	18X40	415		