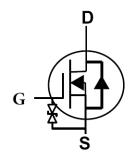
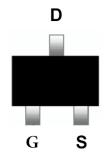


600V Depletion-Mode Power MOSFET

(P6) Lead Free Package and Finish


2 Load 1 Too 1 donage and 1 mien						
BV _{DSX} R _{DS(ON),typ.}		I_{DSS}				
600V	350Ω	12mA				

General Features


- Proprietary Advanced Planar Technology
- Depletion Mode (Normally On)
- **ESD** improved Capability
- Rugged Polysilicon Gate Cell Structure
- Fast Switching Speed
- **RoHS Compliant**
- Halogen-free available

Applications

- Synchronous Rectification
- Normally-on Switches
- Linear Amplifier, Converters
- **Constant Current Source**
- Telecom

Symbol

Package:SOT-23

Ordering Information

Part Number Marking		Package	Brand	
F501D	F501D	SOT-23	ĭ	

Absolute Maximum Ratings

 $T_C=25^{\circ}C$ unless otherwise specified

Symbol	Parameter	F501D	Unit	
V_{DSX}	Drain-to-Source Voltage[1]	600	V	
V _{GS}	Gate-to-Source Voltage	±20		
	Continuous Drain Current	0.030		
l _D	Continuous Drain Current @ Tc=70°C	0.025	А	
I _{DM}	Pulsed Drain Current [2]	0.120		
VESD(G-S)	Gate source ESD (HBM-C= 100pF, R=1.5k Ω)	300	V	
P _D	Power Dissipation	0.5	W	
T _L	Soldering Temperature Distance of 1.6mm from case for 10 seconds	300	°C	
T _J & T _{STG}	Operating and Storage Temperature Range	-55 to 150	C	

Caution: Stresses greater than those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device.

Thermal Characteristics

Symbol	Parameter	F501D	Unit
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	250	K/W

Electrical Characteristics

OFF Characteristics T_J =25°C unless otherwise specified

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
BV_{DSX}	Drain-to-Source Breakdown Voltage	600			V	V _{GS} =-15V, I _D =250uA
I _{D(OFF)}	Drain to Course Leakage Current			0.1		V _{DS} =600V, V _{GS} =-5V
	Drain-to-Source Leakage Current			10	uA	V_{DS} =480V, V_{GS} =-5V, T_J =125°C
	Gate-to-Source Leakage Current			+100	20	V _{GS} =+10V, V _{DS} =0V
I _{GSS}	Gale-10-30uice Leakage Current			-100	nA	V _{GS} =-10V, V _{DS} =0V

ON Characteristics

T_J =25 °C unless otherwise specified

			.0 =0 0 0000 000 000			
Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
I _{DSS}	Saturated Drain-to-Source Current	12			mA	V_{DS} =25V, V_{GS} =0V
R _{DS(ON)}	Static Drain-to-Source On-Resistance		350	700	Ω	V _{GS} =0V, I _D =3.0mA _[3]
$V_{GS(OFF)}$	Gate-to-Source Cut-off Voltage	-2.7	-1.8	-1.0	V	V_{DS} =3 V , I_{D} =8.0 u A
gfs	Forward Transconductance	0.008	0.017		S	VDS=50V, ID =0.01A

Dynamic Characteristics

Essentially independent of operating temperature

Thanne Characterionice			Education independent of operating temperature			
Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
C _{iss}	Input Capacitance		50			V_{GS} =-5V, V_{DS} =25V, f=1.0MH _Z
C _{rss}	Reverse Transfer Capacitance		1.1		pF	
C _{oss}	Output Capacitance		4.5			
Qg	Total Gate Charge		1.1			
Q _{gs}	Gate-to-Source Charge		0.5		nC	V_{GS} =-5V~+5V, I_{D} =10mA, V_{DS} =400V
Q_{gd}	Gate-to-Drain (Miller) Charge		0.35			

Resistive Switching Characteristics

Essentially independent of operating temperature

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
td(ON)	Turn-on Delay Time		9.9		nS	V_{DD} =300V, I_{D} =10mA, V_{GS} = -5V~+5V R_{G} =6.1 Ω
trise	Rise Time		50			
td(OFF)	Turn-Off Delay Time		55			
t fall	Fall Time		130			-

F501D

Source-Drain Body Diode Characteristics

T_J=25℃ unless otherwise specified

Symbol	Parameter	Min	Тур.	Max.	Unit	Test Conditions
Is	Continuous Source Current (Body Diode)			0.025	۸	Ta=25°C
I _{SM}	Maximum Pulsed Current (Body Diode)			0.100	Α	Ta=25 C
V_{SD}	Diode Forward Voltage			1.2	V	I_S =15mA, V_{GS} =-5V
trr	Reverse Recovery Time		240		ns	IF=10mA,Tj = 25°C,
Qrr	Reverse Recovery Charge		625		nC	dIF/dt=100A/us, VR=300V

Note:

 $V_{GSO@IGS=\,\pm1mA(Open\,Drain)\,>20}$

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

Idm, Peak Current, Amps

Typical Characteristics

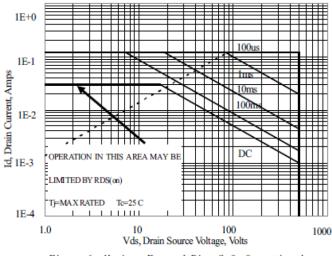


Figure 1 Maximum Forward Bias Safe Operating Area

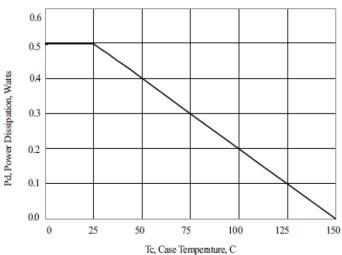


Figure 2 Maximum Power Dissipation vs Case Temperature

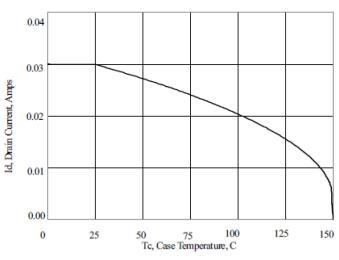


Figure 3 Maximum Continuous Drain Current vs Case Temperature

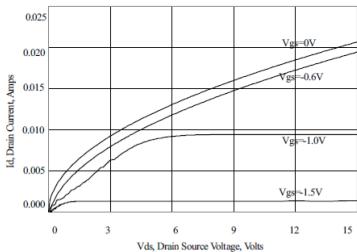


Figure 4 Typical Output Characteristics

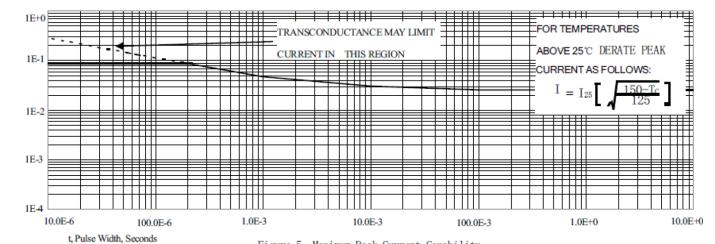


Figure 5 Maximum Peak Current Capability

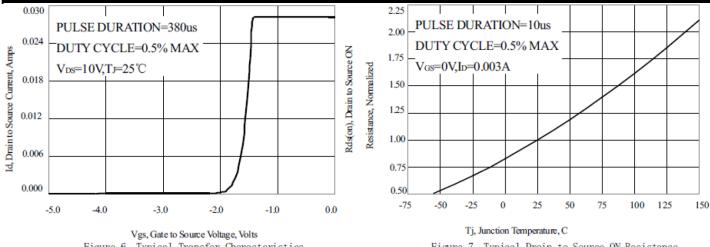


Figure 6 Typical Transfer Characteristics

Figure 7 Typical Drain to Source ON Resistance vs Junction Temperature

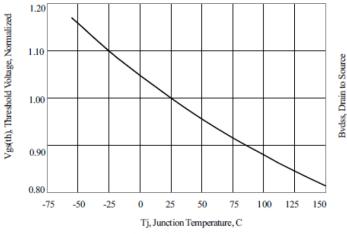


Figure 8 Typical Threshold Voltage vs Junction Temperature

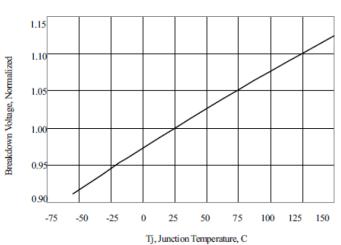


Figure 9 Typical Breakdown Voltage vs Junction Temperature

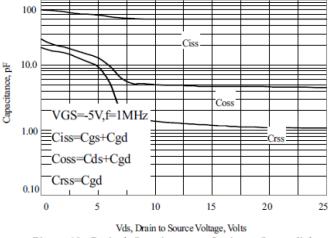


Figure 10 Typical Capacitance vs Drain to Source Voltage

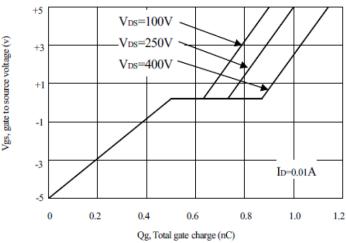


Figure 11 Typical Gate Charge vs Gate to Source Voltage

Disclaimers:

Perfect Intelligent Power Semiconductor Co., Ltd (PIP) reserves the right to make changes without notice in order to improve reliability, function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant information before orders and should verify that such information is current and complete. All products are sold subject to PIP's terms and conditions supplied at the time of order acknowledgement.

Perfect Intelligent Power Semiconductor Co., Ltd warrants performance of its hardware products to the specifications at the time of sale, Testing, reliability and quality control are used to the extent PIP deems necessary to support this warrantee. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessarily performed.

Perfect Intelligent Power Semiconductor Co., Ltd does not assume any liability arising from the use of any product or circuit designs described herein. Customers are responsible for their products and applications using PIP's components. To minimize risk, customers must provide adequate design and operating safeguards.

Perfect Intelligent Power Semiconductor Co., Ltd does not warrant or convey any license either expressed or implied under its patent rights, nor the rights of others. Reproduction of information in PIP's data sheets or data books is permissible only if reproduction is without modification or alteration. Reproduction of this information with any alteration is an unfair and deceptive business practice. Perfect Intelligent Power Semiconductor Co., Ltd is not responsible or liable for such altered documentation.

Resale of PIP's products with statements different from or beyond the parameters stated by Perfect Intelligent Power Semiconductor Co., Ltd for that product or service voids all express or implied warrantees for the associated PIP's product or service and is unfair and deceptive business practice. Perfect Intelligent Power Semiconductor Co., Ltd is not responsible or liable for any such statements.

Life Support Policy:

Perfect Intelligent Power Semiconductor Co., Ltd's products are not authorized for use as critical components in life support devices or systems without the expressed written approval of Perfect Intelligent Power Semiconductor Co., Ltd.

As used herein:

- 1. Life support devices or systems are devices or systems which:
 - a. are intended for surgical implant into the human body,
 - b. support or sustain life,
 - c. whose failure to perform when properly used in accordance with instructions for used provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.