

SPECIFICATION

RoHS Compliant Directive 2011/65/EU

Customer:	RIC-VIVO

		Receipt
Item:	Crystal Unit	
Туре:	NX2016SF	
Neminal Frequency		
Nominal Frequency:	19.2 MHz	[
Customer's Spec. No.:		
NDK Spec. No.:	EXS00A-CS09986	

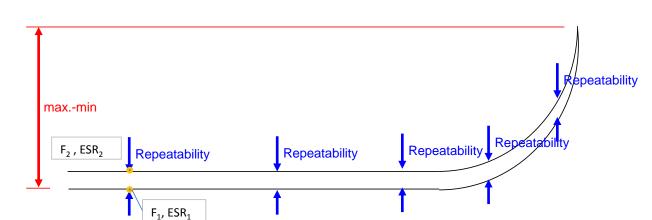
	Revision Record								
Rev.	Rev. Date	Items	Contents	Approved	Checked	Drawn			
	22. Jun. 2016	Issue		I. Miyahara	T. Asamizu	Y. Takaki			

1. Customer Specifications Number

: EXS00A-CS09986

2. NDK Specification Number

3. Туре


: NX2016SF

:---

4. Electrical Characteristics

	Parameters			Electri	cal Spe	с.	Natao
	Farameters	SYM.	Min	TYP	MAX	Units	Notes
1	Nominal frequency	f _{nom}		19.2		MHz	-
2	Overtone order	-	Fu	Indamen	ital	-	AT-CUT
3	Frequency tolerance	-	-10	-	+10	ppm	at +25°C
4	Frequency stability over temperature	-	-12	-	+12	ppm	at - 30 to +85°C The reference temp. shall be +32°C
5	Equivalent resistance	-	-	-	80	Ω	IEC π -Network / Series
6	Load capacitance	CL	-	7	-	pF	IEC π-Network
7	Level of drive	DL	-	10	100	μW	-
8	Temperature coefficient (Complian	t with Qu	ualcomm	Mini-Sp	pec. 80-\	/9690-26)	
8.1	Inflection temperature	Т0	+30.5	+32	+33.5	°C	-
8.2	Constant range	C0	-10	-	10	ppm	-
8.3	1 st order coefficient range	C1	-0.4	-	-0.1	ppm/°C	-
8.4	2 nd order coefficient range	C2	-4.5	-	+4.5	x 10 ⁻⁴ ppm/°C ²	-
8.5	3 rd order coefficient range	C3	+8.5	-	+11.5	x 10 ⁻⁵ ppm/°C ³	-
9	Shunt Capacitance	Cp	0.3	-	1.3	pF	Not grounded
10	Motional Capacitance	Cm	1.2	-	3.1	fF	Not grounded
11	Motional Inductance	Lm	22.2	-	57.3	mH	Not grounded
12	Pulling Sensitivity	PS	8.7	-	29.1	ppm/pF	at CL = 7pF This value is calculated by following formula. Pulling Sensitivitiy(PS) [ppm/pF] = $\frac{C_m \times 1000}{2 (C_p + C_L)^2}$
13	Q-factor	-	75,000	-	-	-	-
14	Spurious resistance	-	1,100	-	-	Ω	within Fnom +/- 1MHz
15	Insulation Resistance	-	500	-	-	MΩ	Terminal to terminal insulation resistance also terminal to cover insulation resistance must be $500M\Omega$ (Min.) when DC100V ±15V is applied.
16	Air-tightness	-	-	-	1.1×10 ⁻⁹	Pa m³/s	Helium leak detector
17	Operating temperature range	-	-30	-	+105	°C	-
18	Storage temperature range	-	-40	-	+105	°C	-
19	Frequency drift after reflow	-	-2	-	+2	ppm	after two reflow passed.
20	Aging	-	-0.7	-	+0.7	ppm	1 st year
20	Aging	-	-5	-	+5	ppm	7 th years

	Measurement condition	Freq.	ESR
Drive level	0.01uW to 100uW to 0.01uW		
Number of points	29 points (15 points up, 15 points down)		
Max. – Min. spec.	Difference between max and min in two way measurement.	<3ppm	<20%
	Freq.: F _{MAX} -F _{MIN}		
	ESR: (ESR _{MAX} -ESR _{MIN})/ESR _{MIN}		
Repeatability spec.	Repeatability of two way measurement in above condition.	<0.7ppm	<10%
	Freq.: F ₂ -F ₁		
	ESR: (ESR ₂ -ESR ₁)/ESR ₁		
	ESR ₁ : first measurement on each drive levels		
	ESR ₂ : second measurement on each drive levels		

6. Residual frequency stability slope : ±50 ppb/°C Max.

5. Drive level dependency (DLD)

Condition 1A - Test condition (continuous temperature rate change of ~1.0°C/min) The residual is defined as the difference between the crystal measured FT curve and the 5th order polynomial fit of the FT curve. Frequency is measured between -30 to +85°C every 1°C. Residual slope is calculated by the formula below.

 $FIT\Delta f(t_N) = a(t_N - t_0)^5 + b(t_N - t_0)^4 + c(t_N - t_0)^3 + d(t_N - t_0)^2 + e(t_N - t_0) + f$ $t_1 = -30, t_2 = -29, \dots + t_{114} = +84, t_{115} = +85^{\circ}C$ $t_0 = +32^{\circ}C$ $RES(t_N) = F(t_N) - FIT\Delta f(t_N)$ $RES _ SLP = RES(t_{N+1}) - RES(t_N)$

: Measurement method and specs are defined below.

- 7.1. 5°C small orbit hysteresis 1 : \pm 50 ppb/°C Max. Ta = -30 to +85°C
 - Condition1B test condition (continuous temperature rate change of ~1.0°C/min.)
 - Measure FT points every 0.5°C while cycling temperature over a 5°C small temperature orbit, an example 5°C small orbit temperature cycle is +30°C to +35°C to +30°C.
 - During every individual heating/cooling cycle there should be 11 points; discard the first point of each heating and cooling cycle; this leaves 10 points for each heating and cooling cycle. Subtract the fifth-order polynomial best fit from 1A for each of the 10 points, and then calculate the slope of the residual for each of these heating and cooling 10 point curves.
 - The residual slope should be within +/-50 ppb/°C.
- 7.2. 5°C small orbit hysteresis 2 : 100 ppb (magnitude) peak-peak. Ta = -30 to +85°C
 - Condition 2 test condition (continuous temperature rate change of ~1.0°C/min.)
 - Measure FT points every 0.5°C while cycling temperature over a 5°C small temperature orbit, an example 5°C small orbit temperature cycle is +30°C to +35°C to +30°C.
 - During every individual heating/cooling cycle there should be 11 points; discard the first and last point of each heating and cooling cycle, which results in 9 temperature points. Calculate the average measured peak-to-peak frequency difference for these 9 temperature points.
 - The average difference is the magnitude of the small orbit hysteresis 2.
 - The temperature is based on thermistor.
- 8. Thermistor characteristics

8.1. Size	: 0.6×0.3×0.15(mm)
8.2. Resistance value (at +25°C)	: 100 (kΩ) ±1%
8.3. B Constant (+25/+50°C)	: 4250 (K) ±1%
8.4. Rated power (at 25°C)	: 100 (mW) Max.

9. Examination results document

Since a performance is guaranteed, an examination results document does not submit.

10. Application drawing

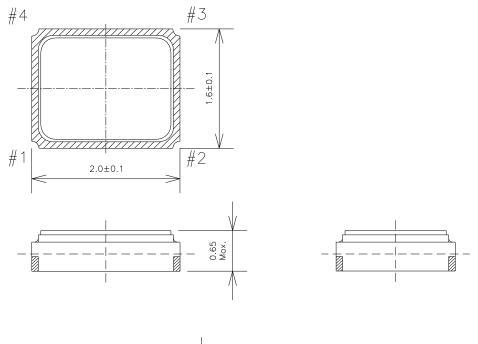
10.1. Dimension Drawing	: EXD14B-00584
10.2. Taping and Reel figure	: EXK17B-00371
	: EXK17B-00370
10.3. Holder Marking	: EXH11B-00319
10.4. Reliability assurance Item	: EXS30B-00808

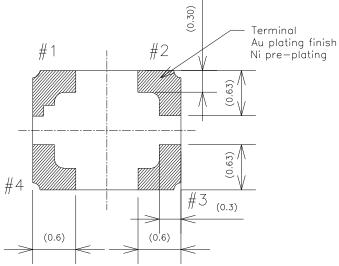
- 11. Notice
 - 11.1. Order items are manufactured according to specification. As to conditions, which are not indicated in this specification and unpredictable such as applied condition and oscillation margin, please check them beforehand.
 - 11.2. Unless we receive request for modification within 3 weeks from the issue date of this NDK specification sheet, we will supply products according to this specification. Also, if you'd like to modify specification of order, which has been placed with delivery request within 3 weeks from the issue data of this specification sheet, we would like to discuss with you separately.
 - 11.3. In no event shall the company be liable for any product failure resulting from an inappropriate handling or operation of the product beyond the scope of its guarantee.
 - 11.4. Where any change to the process condition is made due to the change(s) in the production

line, inform personnel of the specifications.

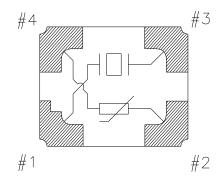
- 11.5. Should this specification data give rise to any disputes relating to any intellectual property rights or any other rights of a third person, the company shall not indemnify anyone for any damage. Their disclosure must not be construed as the grant of a license to use any of the intellectual property rights owned by the company.
- 11.6. If you intend to use products listed on this specification for applications that may result in loss of life or assets (controls relating to safety, medical equipment, aeronautical equipment, space equipment, etc.), please do not fail to advise us of your intention beforehand.
- 11.7. In the company's production process whatever amount of ozone depleting substances (ODS) as specified in the Montreal protocol is not used.
- 11.8. Information contained in this specification must not be quoted, reproduced or used for other purposes including processing either in part or in full without obtaining prior approval from the company.
- 11.9. The appearance color has a different case by purchasing it more than 2 suppliers of the component, but characteristic and reliability are guaranteed.
- 11.10. In case of the product long time keep at high temperature and humidity, may affect product characteristic (solder ability) and a packing condition.

Please keep at storage condition of temperature +5°C ~+35°C, humidity ~85%RH.

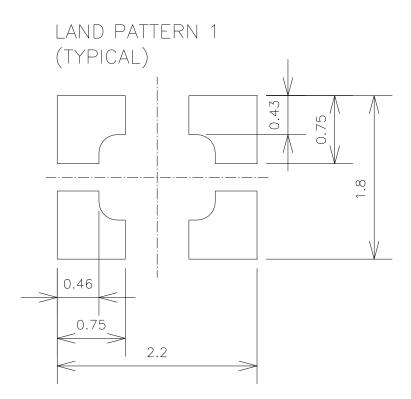

11.11. Crystal units will be damaged by ultrasonic welding process due to resonance of crystal wafer itself. NDK does not recommend using ultrasonic welding. If Ultra Sonic welding used, NDK strongly recommend verifying crystal unit damage by ultrasonic weld.

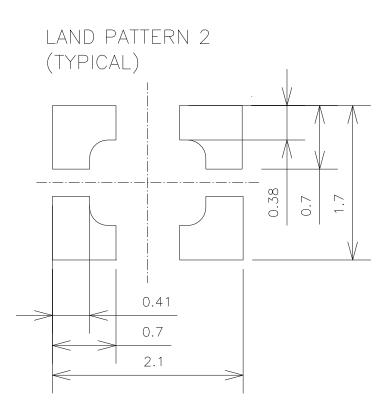

12. Prohibited items

Be sure to use the product under the following conditions. Otherwise, the characteristics deterioration or destruction of the product may result.


- (1) Reflow soldering heat resistance Peak temperature: 265°C, 10 sec Heating: 230°C or higher, 40 sec Preheating: 150°C to 180°C, 120 sec Reflow passage times: twice
- (2) Manual soldering heat resistance

Pressing a soldering iron of 400°C on the terminal electrode for four seconds (twice).

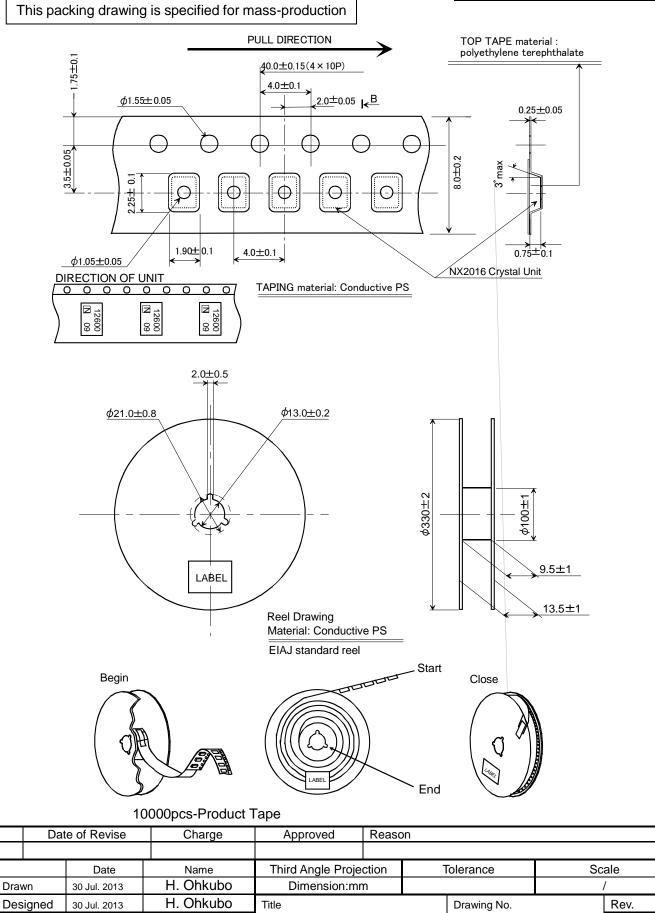

Terminal land connection (TOP VIEW)



# 1	XTAL IN
#2	THERMISTOR OUT, GND
#3	XTAL OUT
#4	THERMISTOR IN

Date of Revise		Charge	Approved	Reason			
	Date	Name	Third Angle Projection		Tolerance	Sca	ale
Drawn	15. Mar. 2013	15. Mar. 2013	Dimension:m	Dimension:mm		/	
Designed	15. Mar. 2013	15. Mar. 2013	Title		Drawing No.		Rev.
Checked	15. Mar. 2013	15. Mar. 2013	NX201	NX2016SF Dimension Drawing		EXD14B-00584(1/2)	
Approved	15. Mar. 2013	15. Mar. 2013	Dimension				

NIHON DEMPA KOGYO CO., LTD.



Date of Revise		Charge	Approved	Reason					
	Date	Name	Third Angle Projection		Third Angle Projection Tolerance S		ale		
Drawn 15. Mar. 2013		T.Asamizu	Dimension:mm			/			
Designed	15. Mar. 2013	T.Asamizu	Title		Drawing No.		Rev.		
Checked	15. Mar. 2013	I.Miyahara	NX201	NX2016SF Dimension Drawing					
Approved	15. Mar. 2013	M.Kubota	Dimension			EXD14B-00584(2/2)			

NIHON DEMPA KOGYO CO., LTD.

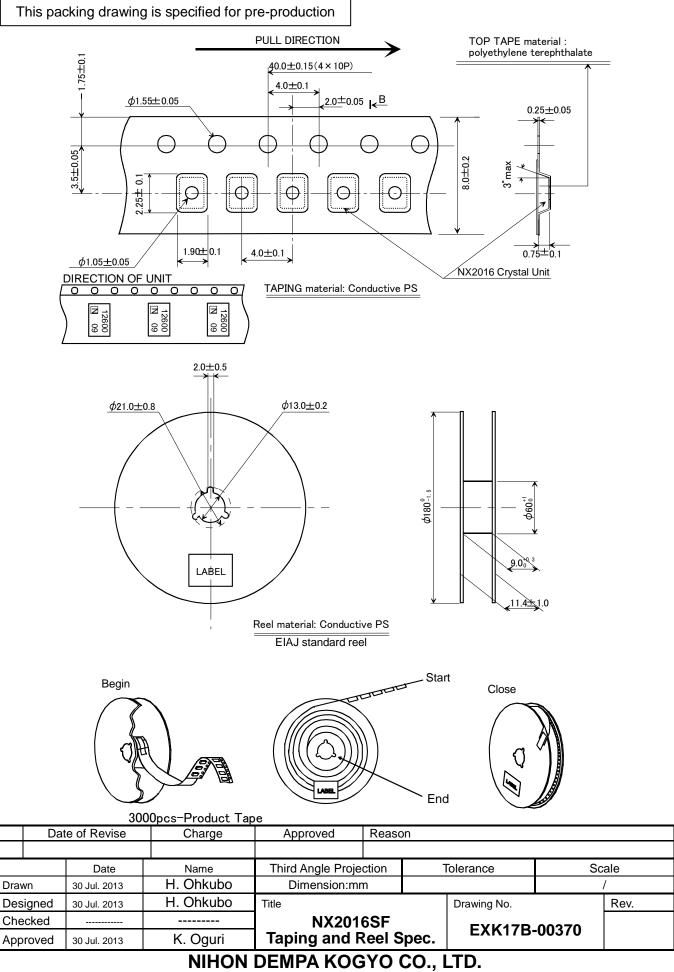
)

NIHON DEMPA KOGYO CO., LTD.

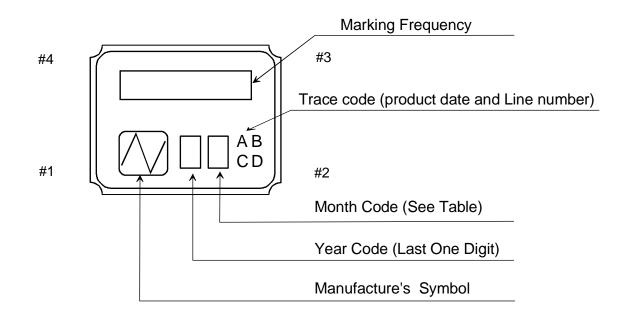
NX2016SF

Taping and Reel Spec.

K. Oguri


Checked

Approved


30 Jul. 2013

EXK17B-00371

Form M-1

NOTE

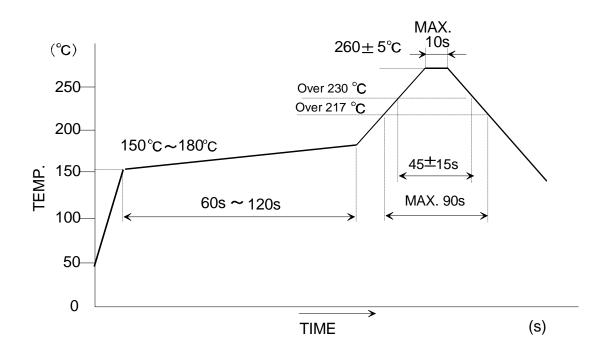
1. Month Code Table

Month	1	2	3	4	5	6	7	8	9	10	11	12
	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Month Code	1	2	3	4	5	6	7	8	9	х	Y	Z

*Marking digits are not include a decimal point and dot mark.

	Dat	e of Revise	Charge	Approved Reason				
Α	10	. Jul. 2008	T.Asamizu	K.Kubota	K.Kubota Delete application period.			
		Date	Name	Third Angle Projection To		Tolerance		ale
Drav	vn	14. Feb. 2006	T.Asamizu	Dimension:mm				/
Des	igned	14. Feb. 2006	T.Asamizu	Title		Drawing No.		Rev.
Che	ecked	14. Feb. 2006	I.Miyahara		Marking			^
Арр	roved	14. Feb. 2006	K.Okamoto	Crystal Holder Marking		EXH11B-00319		A

NIHON DEMPA KOGYO CO., LTD.


		<u>Reliability assurat</u>		(page: 1/2)
No.	Test Item	Test Methods		Spec. Code
1	High temperature	Temperature: +85 °C Test time: 500 Hr.		A, C
2	Cold resistance	Temperature: –40 °C Test time: 500 Hr.		A, C
3	Humidity	at +85 °C with 80 to 85 % RH for 500 hours.		A, C
4	Thermal shock		NE CYCLE (Fig.1)	A, C
5	Vibration	Frequency Range Amplitude or Acceleration 1 cycle Test time	10 to 2000Hz 1.52 mm or 20 G 20 minutes Three mutually perpendicular axes each 12 times.	A, C
6	Shock 1	Shock Test time	3000 Gs 0.3 msec. Six mutually perpendicular axes each 1 times.	A, C
7	Shock 2	Shock Height Drop times	Device are put on the weight of 200 g and dropped on concrete board. 1.5 m Six mutually perpendicular axes each 10 times.	A, C
8	Solerability	Residual heat temperature Residual heat time Peak temperature	150 °C 60 to 120 sec 240°C (more than 215 °C 10 to 30 sec)	В
9	Reflow resistance	Temperature cycle as shown in (Fig2.) for 3 cycle.		A, C

Reliability assurance item (1/1)

Specification code	tion code Specification	
А	Δ F/F $\leq \pm 1.0$ ppm Δ Cl $\leq \pm 15$ % or $\pm 2 \Omega$ greater value	
В	The electrodes shall acquire a new solder coat over at least 90 % of immersed area.	
С	Thermistor resistance: $\Delta R/R \le 5\%$	

Reliability assurance item (2/2)

Recommended reflow profile

A: 150 to 180 °C (90 ± 30 sec.) B: 230°C min. (45 ± 15 sec.) C: Peak temperature. 260°C ± 5 °C (10sec. max.) D: 217 °C Min. (90 sec. max.)