maxscend?

MXD8651

SP5T Switch for Receive Diversity

APPROVED

This document contains information that is confidential and proprietary to Maxscend Technologies Inc. (Maxscend) and may not be reproduced in any form without express written consent of Maxscend. No transfer or licensing of technology is implied by this document.

General Description

The MXD8651 is a low loss, high isolation SP5T switch with performance optimized for receive diversity routing applications.

The MXD8651 is compatible with +1.0 V control logic, which is a key requirement for most cellular transceivers. This part is packaged in a compact $2 \mathrm{~mm} \times 2 \mathrm{~mm} \times 0.55 \mathrm{~mm}, 14-\mathrm{pin}$, QFN package which allows for a small solution size with no need for external DC blocking capacitors (when no external DC is applied to the device ports).

Features

- Excellent insertion loss and isolation performance
- 0.5 dB Typical Insertion Loss, Band 7
- 25 dB typical Isolation, Band 7
- Multi-Band operation 700 MHz to 2700 MHz
- GPIO compatible to 1.8 V Typ (1.0V min)
- Power handling +30 dBm
- Compact $2 \mathrm{~mm} \times 2 \mathrm{~mm} \times 0.55 \mathrm{~mm}$, in QFN package, MSL1
- No DC blocking capacitors required (unless external DC is applied to the RF ports)

Applications

- Cellular Handset Applications
- Cellular modems and USB Devices
- Multi-mode GSM/Edge/WCDMA applications
- LTE applications

Functional Block Diagram and Pin Function

Figure 1. Functional Block Diagram and Pinout (Top View)

Application Circuit

Figure 2. MXD8651 Evaluation Board Schematic
Table 1. Pin Description

Pin No.	Nam \mathbf{e}	Description	Pin No.	Name	Description
1	V3	Control Logic \#3	8	GND	Ground
2	V2	Control Logic \#2	9	ANT	Antenna
3	V1	Control Logic \#1	10	GND	Ground
4	VDD	Power supply	11	RF1	RF port1
5	GND	Ground	12	RF2	RF port2
6	RF5	RF port5	13	RF3	RF port3
7	RF4	RF port4	14	GND	Ground
Ground Paddle	GND	Ground			

Note: Bottom ground paddles must be connected to ground.

Truth Table

Table 2.

Control pins							
V1	V2	V3	RF1	RF2	RF3	RF4	RF5
1	0	0	Insertion Loss	Isolation	Isolation	Isolation	Isolation
0	1	0	Isolation	Insertion Loss	Isolation	Isolation	Isolation
1	1	0	Isolation	Isolation	Insertion Loss	Isolation	Isolation
0	0	1	Isolation	Isolation	Isolation	Insertion Loss	Isolation
1	0	1	Isolation	Isolation	Isolation	Isolation	Insertion Loss

Note: $\quad " 1 "=1.0 \mathrm{~V}$ to 3.0 V . " $0 "=0 \mathrm{~V}$ to 0.3 V . Insertion loss in the $\mathrm{V} 1 / 2 / 3=110$ state is 3 dB lower than typical insertion loss with only one arm "on".

Recommended Operation Range

Table 3. Recommended Operation Condition

Parameters	Symbol	Min	Typ	Max	Units
Operation Frequency	f 1	0.1	-	3.0	GHz
Power supply	V_{DD}	2.5	2.8	3.3	V
Switch Control Voltage High	V_{H}	1.0	1.8	3.0	V
Switch Control Voltage Low	V_{L}	0	0	0.3	V

Specifications

Table 4. Electrical Specifications

Parameter	Symbol	Specification			Units	Test Condition (Note 2)
		Min.	Typical	Max.		
DC Specifications						
Supply voltage	$V_{\text {DD }}$	2.5	2.8	3.3	V	
Supply current	I_{DD}		50	90	$\mu \mathrm{A}$	Active mode
Control voltage: High Low	$\begin{aligned} & \mathrm{V}_{\text {CTLLH }} \\ & \mathrm{V}_{\text {CTLLL }} \end{aligned}$	1.0 0		3.0 0.3	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	V_{DD} must be $>\mathrm{V}_{\text {CTL }}$ at all times
Control current	$\mathrm{I}_{\text {CTL }}$			5	$\mu \mathrm{A}$	
Switching Speed, on RF to another			2	5	$\mu \mathrm{s}$	10\% to 90\% RF
Turn-on time	$\mathrm{t}_{\text {on }}$		5	10	$\mu \mathrm{s}$	Time from $\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$ to part ON and RF at 90%
RF Specifications						
Insertion Loss						
Insertion Loss TRx - ANT	IL		0.40 0.40 0.50 0.50 0.55		dB dB dB dB dB	704 MHz to 787 MHz 815 MHz to 960 MHz 1710 MHz to 1980 MHz 2110 MHz to 2170 MHz 2300 MHz to 2690 MHz
Isolation						
Isolated TRx ports ANT	ISO	45 45 35 30 25			$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	704 MHz to 787 MHz 815 MHz to 960 MHz 1710 MHz to 1980 MHz 2110 MHz to 2170 MHz 2300 MHz to 2690 MHz
Harmonics (Pin $=+16 \mathrm{dBm}$)						
Low Band, 2fo Low Band, 3fo High Band, 2 fo High Band, 3fo High Band, 2fo High Band, 3fo	$\begin{aligned} & 2 \mathrm{fo} \\ & 3 \mathrm{fo} \end{aligned}$		$\begin{aligned} & -110 \\ & -105 \\ & -105 \\ & -100 \\ & -100 \\ & -100 \end{aligned}$		dBc dBc dBc dBc dBc dBc	$\begin{aligned} & \hline \text { Pin }=+16 \mathrm{dBm}, 50 \mathrm{ohms}, \\ & \mathrm{fo}=824 \mathrm{MHz} \\ & \text { Pin }=+16 \mathrm{dBm}, 50 o \mathrm{mms}, \\ & \mathrm{fo}=824 \mathrm{MHz} \\ & \text { Pin }=+16 \mathrm{dBm}, 50 o \mathrm{hms}, \\ & \mathrm{fo}=1980 \mathrm{MHz} \\ & \text { Pin }=+16 \mathrm{dBm}, 50 o \mathrm{hms}, \\ & \mathrm{fo}=1980 \mathrm{MHz} \\ & \text { Pin }=+16 \mathrm{dBm}, 50 o \mathrm{hms}, \\ & \mathrm{fo}=2570 \mathrm{MHz} \\ & \mathrm{Pin}=+16 \mathrm{dBm}, 50 o \mathrm{hms}, \\ & \text { fo }=2570 \mathrm{MHz} \\ & \hline \end{aligned}$
VSWR			1.1	1.5		$704-2690 \mathrm{MHz}$

MXD8651 - SP5T Switch for Receive Diversity

Absolute Maximum Ratings

Table 5. Maximum ratings

Parameters	Symbol	Minimum	Maximum	Units
Supply voltage	V_{DD}	2.5	+3.3	V
Control voltage (V1, V2, and V3)	$\mathrm{V}_{\text {CTL }}$	0	+3.0	V
RF input power (RF1 to RF5)	PIN		+30	dBm
Operating temperature	TOP	-20	+85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {STG }}$	-40	+125	C
Electrostatic Discharge, Human Body Model (HBM), Class 1C	ESD		1000	V

Note: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device

Package Outline Dimension

TOP VIEW

DESCRIPTION	SYmbol	MILLIMETER		
		MiN	NOM	MAX
TOTAL THICKNESS	A	0.50	0.55	0.60
STAND OFF	A1	0	---	0.05
MOLD THICKNESS	A2	0.35	0.40	0.45
L/F Thickness	A3	0.152 REF		
LEAD WIDTH	b	0.13	0.18	0.23
BODY SIZE	D	1.95	2.00	2.05
	E	1.95	2.00	2.05
LEAD PITCH	e	0.40 BSC		
EP SIZE	J	0.93	0.98	1.03
	K	0.93	0.98	1.03
LEAD LENGTH	L	0.16	0.21	0.26
PACKAGE EDGE TOLERANCE	000	0.100		
MOLD FLATNESS	bbb	0.100		
COPLANARITY	ccc	0.080		
LEAD OFFSET	ddd	0.100		
EXPOSED PAD OFFSET	eee	0.100		

Figure 3. package outline dimension

Marking Specification

Figure 4. Marking specification (Top View)

Tape and Reel Dimensions

[^0]Figure 5. Tape and reel dimensions

MXD8651 - SP5T Switch for Receive Diversity
Reflow Chart

Figure 6. Recommended Lead-Free Reflow Profile
Table 6. Reflow condition

Profile Parameter	Lead-Free Assembly, Convection, IR/Convection
Ramp-up rate $\left(\mathrm{TS}_{\max }\right.$ to $\left.\mathrm{T}_{\mathrm{p}}\right)$	$3^{\circ} \mathrm{C} /$ second max.
Preheat temperature $\left(\mathrm{TS}_{\text {min }}\right.$ to $\left.\mathrm{TS}_{\text {max }}\right)$	$150^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
Preheat time $\left(\mathrm{t}_{\mathrm{s}}\right)$	$60-180$ seconds
Time above $\mathrm{TL}, 217^{\circ} \mathrm{C}\left(\mathrm{t}_{\mathrm{L}}\right)$	$60-150$ seconds
Peak temperature $\left(\mathrm{T}_{\mathrm{p}}\right)$	$260^{\circ} \mathrm{C}$
Time within $5^{\circ} \mathrm{C}$ of peak temperature $\left(\mathrm{t}_{\mathrm{p}}\right)$	$20-40$ seconds
Ramp-down rate	$6^{\circ} \mathrm{C} /$ second max.
Time $25^{\circ} \mathrm{C}$ to peak temperature	8 minutes max.

ESD Sensitivity

Integrated circuits are ESD sensitive and can be damaged by static electric charge. Proper ESD protection techniques should be used when handling these devices.

RoHS Compliant

This product does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE), and are considered RoHS compliant.

[^0]: SECTION Y-Y

