
MXD8015LL

Low Noise Amplifier for LTE Low Band

QC

11

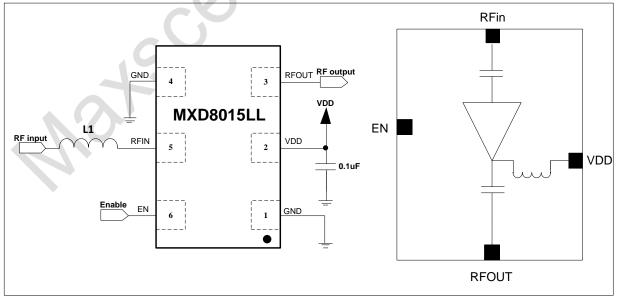
APPROVED

General Description

MXD8015LL high gain, low noise amplifier (LNA) is dedicated to LTE low band receive using advanced RFCMOS process. The high linearity performance and low noise figure makes the device an ideal choice for LTE receiving Applications.

MXD8015LL works under a 2.5V to 3.3V single power supply while consumes 5.5 mA current in low noise mode, in power down mode, the power consumption will be reduced to less than 1uA.

MXD8015LL uses a small 1.1mm \times 0.7mm \times 0.45mm DFN 6-pin package.


Applications

• LTE low band receiving

Features

- Broadband frequency range: 716 960MHz
- High Gain
 - 12.5 dB gain at 716MHz 960MHz
- Low noise figure
 - 0.85dB noise figure at 716MHz 960MHz
- Operation current 5.5mA
- Small, DFN (6-pin, 1.1mm x 0.7mm x 0.45mm) package , MSL1
- No DC blocking capacitors required.

Pin Configuration/Application Diagram (Top view)

Figure 1 MXD8015LL application circuit

Pin Descriptions & Input matching inductance

Table 1

Pin	Pin Name	I/O	Pin Description		
1	GND	AG	Analog VSS		
2	VDD	AP	Power supply		
3	RFOUT	AO	LNA output		
4	GND	AG	Analog VSS		
5	RFIN	AI	LNA input from antenna		
6	EN	DI	Pull high into low noise mode, pull low into shutdown mode		

Note: DI (digital input), DO (digital output), DIO (digital bidirectional), AI (analog input), AO (analog output), AIO (analog bidirectional), AP (analog power), AG (analog ground).

Table 2 Input matching inductance

Component	Matching Band	Vendor	Туре	Part Number & value	
		Murata	Wired inductor, high Q	LQW15AN33N, 33nH	
L1	716MHz – 821MHz	various	Ceramic inductor, low Q	30nH	
	850MHz – 970MHz	Murata	Wired inductor, high Q	LQW15AN33N, 20nH	
		various	Ceramic inductor, low Q	18nH	

Recommended Operation Range

Table 3

Parameters	Symbol	Min	Тур	Max	Units
Operation Frequency	f1	716	-	960	MHz
Power supply	V _{DD}	2.5	2.8	3.3	V
Control Voltage High	V _{CTL_H}	1.0	1.8	VDD	V
Control Voltage Low	V _{CTL_L}	0	0	0.3	V

Absolute Maximum Ratings

Table 4 Maximum ratings

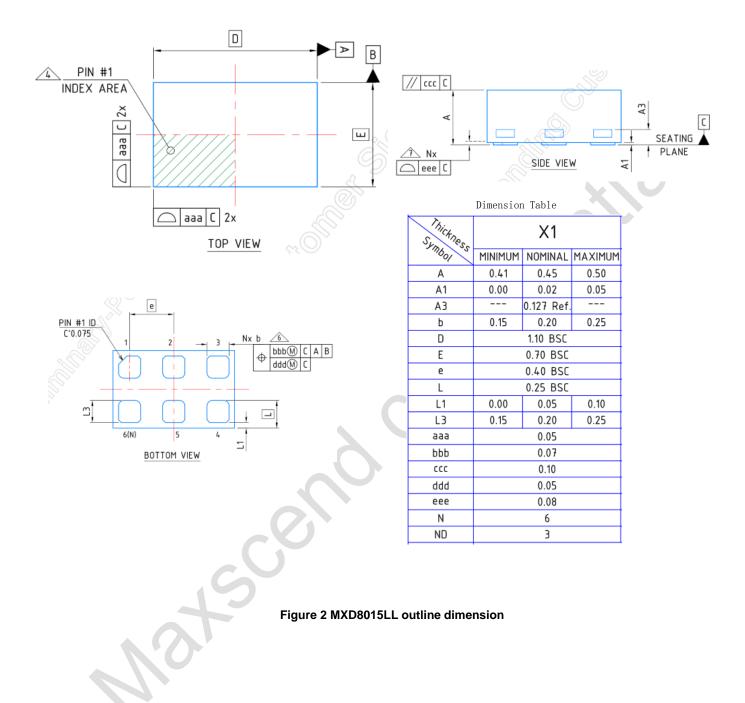
Parameters	Symbol	Minimum	Maximum	Units
Supply voltage	V _{DD}	-0.3	+3.6	V
Digital control voltage	V _{CTL}	-0.3	VDD+0.3, Max: 3.6	V
RF input power	P _{IN}		+20	dBm
Operating temperature	T _{OP}	-35	+90	°C
Storage temperature	T _{STG}	-55	+150	°C
Electrostatic Discharge Human body model (HBM), Class 2 ^{Note1}	ESD_HBM		2000	
Machine Model (MM), Class B ^{Note2}	ESD_MM	-	200	V
Charged device model (CDM), Class III ^{Note3}	ESD_CDM		500	

Note: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device. Note1: According to ESDA/JEDECJS-001-2014 Note2: According to JESD22-A115C Note3: According to ESDA/JEDECJS-002-2014

Specifications

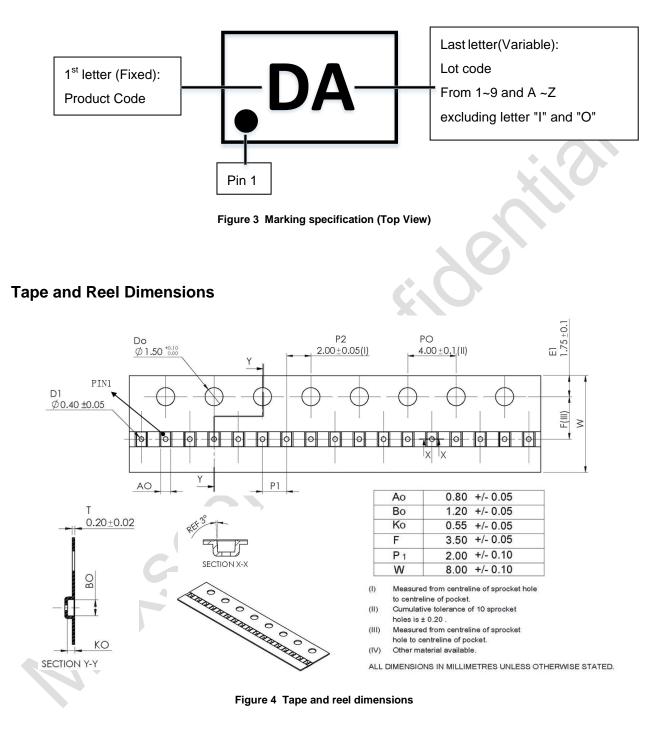
Typically T_A=25°C VDD=2.8V, All data measured on Maxscend's EVB, unless otherwise noted

Parameter	Symbol	Specification		Units	Tost Condition		
Farameter	Symbol	Min.	Typical	Max.	Units	Test Condition	
DC Specifications	DC Specifications						
Supply voltage	V _{DD}	2.5	2.8	3.3	V		
Supply current	I _{DD}	4.0 0	5.5 0.05	8.0 1	mA uA	VDD = 2.8 V, VEN=high VDD = 2.8 V, VEN=low	
RF Specifications							
Power gain	G	11	12.5	14	dB	716 to 960MHz	
Noise figure	NF	-	0.85	1.35	dB	716 to 960MHz	
Input Return loss	S11	-	-10	-6	dB	716 to 960MHz	
Output Return loss	S22	-	-10	-6	dB	716 to 960MHz	
Stability factor	Kf	1.5	-	-	-		
Input 1 dB compression point	P1dB	-7	-3	-	dBm	716 to 960MHz	
Input IP3	IIP3	-2 -1	2 3	-	dBm	Note1 Note2	
Startup time		-	-	1	us	Shutdown state to power on state	


Table 5 High Gain mode Electrical Specifications

Note1: Pin=Pin2=-25dBm, F1=770MHz, F2=771MHz

Note2: Pin=Pin2=-25dBm, F1=900MHz, F2=901MHz


Package Outline Dimensions

MXD8015LL LNA for LTE Low band

Marking Specification

Reflow Chart

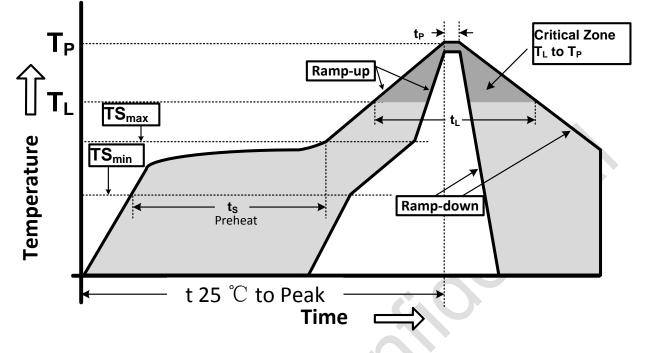


Figure 5 Recommended Lead-Free Reflow Profile

Table 6 Reflow condition

Profile Parameter	Lead-Free Assembly, Convection, IR/Convection			
Ramp-up rate (TS _{max} to T _p)	3℃/second max.			
Preheat temperature (TS _{min} to TS _{max})	150℃ to 200℃			
Preheat time (t _s)	60 - 180 seconds			
Time above TL , 217 $^\circ\!\!\!{\rm C}$ (t_L)	60 - 150 seconds			
Peak temperature (Tp)	260 °C			
Time within 5 $^\circ \! \mathbb{C}$ of peak temperature(t _p)	20 - 40 seconds			
Ramp-down rate	6℃/second max.			
Time 25 $^{\circ}$ C to peak temperature	8 minutes max.			

ESD Sensitivity

Integrated circuits are ESD sensitive and can be damaged by static electric charge. Proper ESD protection techniques should be used when handling these devices.

RoHS Compliant

This product does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE), and are considered RoHS compliant.