

LNA with Bypass Mode for LTE Mid-High Band

Description

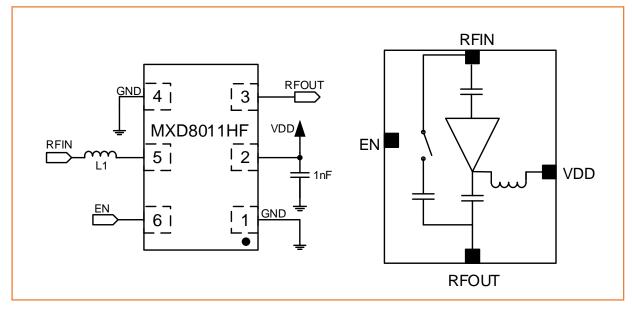
MXD8011HF high gain, low noise amplifier (LNA) is dedicated to LTE middle band and high band receive using advanced RFCMOS process. This product has two operation modes, low noise mode and bypass mode.

MXD8011HF works under a 1.6V to 3.0V single power supply while consumes 7.5 mA current in low noise mode, in bypass mode, the power consumption will be reduced to less than 1uA. MXD8011HF uses a small 1.1mm×0.7mm×0.45mm LGA 6-pin package.

Applications

■ LTE high-mid band receiving

Features


- Broadband frequency range: 1.8 to 2.7 GHz
- High Gain
- 14.0 dB gain at 1.8GHz to 2.2GHz
- 13.0 dB gain at 2.3GHz to 2.7GHz
- Low noise figure
- 0.8 dB noise figure at 1.8GHz to 2.2GHz
- 0.9 dB noise figure at 2.3GHz to 2.7GHz
- Operation current 7.5 mA
- Small, LGA (6-pin, 1.1mm x 0.7mm x 0.45mm) package , MSL1
- No DC blocking capacitors required.

maxscend 🏹

Page 1 / 7

MXD8011HF Rev1.8

This document contains information that is confidential and proprietary to Maxscend Microelectronics Company, Ltd. (Maxscend) and may not be reproduced in any form without express written consent of Maxscend. No transfer or licensing of technology is implied by this document.

Pin Configuration/Application Diagram

Figure 1 Pin Configuration/Application Diagram (Top View)

Table 1 Pin Descriptions

Pin No.	Name	I/O	Pin Description
1	GND	AG	Analog VSS
2	VDD	AP	Power supply
3	RFOUT	AO	LNA output
4	GND	AG	Analog VSS
5	RFIN	AI	LNA input from antenna
6	EN	DI	Pull high into low noise mode, pull low into bypass mode

Note: DI (digital input), DO (digital output), DIO (digital bidirectional), AI (analog input), AO (analog output), AIO (analog bidirectional), AP (analog power), AG (analog ground),

Table 2 Input matching inductance

Component	Matching Band	Vendor	Туре	Part Number & value
L1 -	1800MHz – 2200MHz	Murata	Wired inductor, high Q	LQW15AN4N7, 4.7nH
		various	Ceramic inductor, low Q	4.3nH
	2300MHz – 2700MHz	Murata	Wired inductor, high Q	LQW15AN3N9, 3.9nH
		various	Ceramic inductor, low Q	3.6nH

maxscend 🏹

Page 2 / 7

MXD8011HF: Rev1.8

Absolute Maximum Ratings

Table 3 Absolute Maximum Ratings

Parameters Symbol		Ranges	Units
Supply voltage	V _{DD}	-0.3~+3.3	v
Digital control voltage	V _{CTL}	-0.3~VDD+0.3, Max:3.3	v
RF input power	P _{IN}	+22	dBm
Operating temperature	Т _{ор}	-40~+90	Ċ
Storage temperature	Т _{stg}	-65~+150	Ċ
Human Body Mode ESD	ESD_HBM	1500	v
Charge Device Mode ESD	ESD_cdm	1000	v

Note1: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

Note2: According to ESDA/JEDECJS-001-2014

Note3: According to ESDA/JEDECJS-002-2014

DC Characteristics

Table 4 DC Electrical Specifications

Parameter	Symbol	S	pecificati	on	Units	Test Condition
Farameter	Symbol	Min.	Тур.	Max.		Test Condition
Power supply	V _{DD}	1.6	2.8	3.0	v	
Supply current	I _{DD_HG}	5.5	7.5	11.0	mA	High Gain Mode VDD = 2.8V, VEN=high
Supply current	I _{DD_BY}	-	0.05	1.0	uA	Bypass Mode VDD = 2.8 V, VEN=low
Control Voltage High	V _{CTL_H}	1.0	1.8	VDD	v	
Control Voltage Low	V _{ctl_l}	0.0	0.0	0.3	v	

Page 3 / 7

MXD8011HF: Rev1.8

AC Characteristics

Specification						Test Condition
Parameter	Symbol	Min.	Тур.	Max.	Units	Test Condition
DC Specifications		1800	-	2700	MHz	
Power gain	G	12.5	14.0	15.5	dB	1800-2200MHz
Power gain	G	11.5	13.0	14.5	dB	2300-2700MHz
Neice figure	NF		0.8	1.4	dB	1800-2200MHz
Noise figure	NF	-	0.9	1.5	dB	2300-2700MHz
Input Return loss	S11	-	-10	-5	dB	1800 to 2700MHz
Output Return loss	S22	-	-10	-6	dB	1800 to 2700MHz
Stability factor	Kf	1.2	-	-		
Input 1 dB compression	P1dB	-8	-3		dBm	1800 to 2200MHz
point	FIUD	-4	0	-	dBm	2300 to 2700MHz
		-2	3		dBm	Note1
Input IP3	IIP3	-3	2	-	dBm	Note2
		-3	2		dBm	Note3
Out-of band Input 3rd		-62	-68		dBm	Note4
order intermodulation		-61	-67		dBm	Note5
Input 2nd order intercept		-32	-37		dBm	Note6
intermodulation		-33	-38		dBm	Note7
Startup time		-	-	1	μs	Shutdown state to
Startup time						power on state

Table 5 High Gain mode Electrical Specifications

Typically TA=25 $^\circ\!\!{\rm C}$ VDD=2.8V, All data measured on Maxscend's EVB, unless otherwise noted

Note1: Pin=Pin2=-25dBm, F1=1960MHz, F2=1961MHz

Note2: Pin=Pin2=-25dBm, F1=2100MHz, F2=2101MHz

Note3: Pin=Pin2=-25dBm, F1=2600MHz, F2=2601MHz

Note4: F1=2700MHz, F2=2400MHz, two tone input power -25dBm, measure 3rd order intermodulation at 2100MHz **Note5:** F1=2100MHz, F2=2400MHz, two tone input power -25dBm, measure 3rd order intermodulation at 2700MHz **Note6:** F1=2650MHz, F2=950MHz, two tone input power -25dBm, measure 2nd order intermodulation at 1700MHz **Note7:** F1=950MHz, F2=1700MHz, two tone input power -25dBm, measure 2nd order intermodulation at 2650MHz

Table 6 Bypass Mode Electrical Specifications

Parameter	Symbol	Specification			Units	Test Condition
Falameter	Symbol	Min.	Тур.	Max.	Units	Test Condition
Insertion loss	IL	-5	-2	-	dB	1800 to 2700MHz
Input Return loss	S11	-	-10	-6	dB	1800 to 2700MHz
Output Return loss	S22	-	-10	-6	dB	1800 to 2700MHz
Input 1 dB	P1dB	10	15		dBm	1800 to 2700MHz
compression point	FIUD	10	15	-	abm	

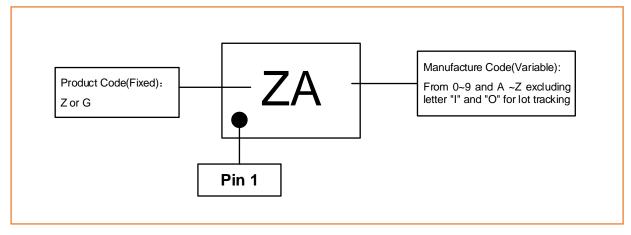
Maxscend 🏹

Page 4/7

MXD8011HF: Rev1.8

Package Outline Dimensions




Figure 2 Package outline dimension

Page 5 / 7

MXD8011HF: Rev1.8

Marking Specifications

Figure 3 Marking Specification (Top View)

Tape and Reel Dimensions

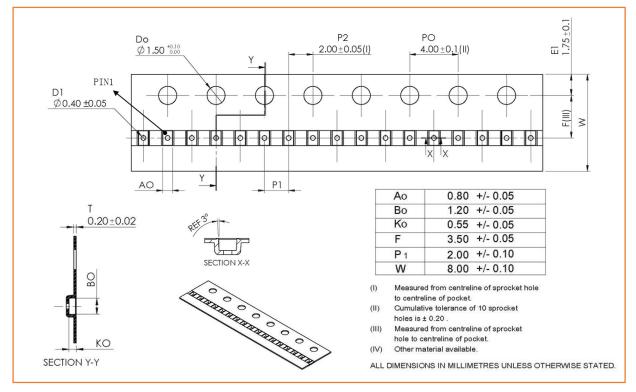


Figure 4 Tape and Reel Dimensions

Page 6 / 7

MXD8011HF: Rev1.8

Reflow Chart

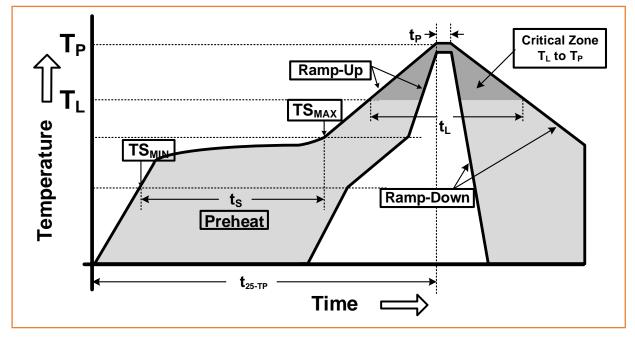


Figure 5 Recommended Lead-Free Reflow Profile

Table 7 Reflow Chart Parameters

Reflow Profile	Parameter			
Preheat Temperature(TS _{MIN} to TS _{MAX})	150℃ to 200℃			
Preheat Time(t _s)	60 to180 Seconds			
Ramp-Up Rate(TS _{MAX} to T _P)	3°C/s MAX			
Time Above T _L 217℃(t _L)	60 to 150 Seconds			
Peak Temperature (T _P)	260℃			
Time within 5°C of Peak Temperature(t_P)	20 to 40 Seconds			
Ramp-Down Rate(TS _{MAX} to T _P)	6°C/s MAX			
Time for 25°C to Peak Temperature(t_{25-TP})	8 Minutes MAX			

ESD Sensitivity

Integrated circuits are ESD sensitive and can be damaged by static electric charge. Proper ESD protection techniques should be applied when devices are operated.

RoHS Compliant

This product does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE), and are considered RoHS compliant.

Maxscend % Page 7 / 7 MXD8011HF: Rev1.8 Copyright @2018 Maxscend Microelectronics Company, Ltd. All rights reserved. Maxscend Confidential