

ISL8485, ISL8490, ISL8491

5V, Low Power, High Speed, RS-485/RS-422 Transceivers

FN6046 Rev 10.00 Oct 18, 2018

The <u>ISL8485</u>, <u>ISL8490</u>, and <u>ISL8491</u> RS-485/RS-422 devices are BiCMOS 5V powered, single transceivers that meet both the RS-485 and RS-422 standards for balanced communication. Unlike competitive devices, this family is specified for 10% tolerance supplies (4.5V to 5.5V).

The ISL8485, ISL8490, and ISL8491 feature data rates up to 5Mbps.

All devices present a single unit load to the RS-485 bus, which allows up to 32 transceivers on the network.

The receiver (Rx) inputs feature a "fail-safe if open" design, which ensures a logic high Rx output if the Rx inputs are floating.

The driver (Tx) outputs are short-circuit protected, even for voltages exceeding the power supply voltage. Additionally, on-chip thermal shutdown circuitry disables the Tx outputs to prevent damage if power dissipation becomes excessive.

The ISL8490 and ISL8491 are configured for full duplex (separate Rx input and Tx output pins) applications. Half duplex configurations (ISL8485) multiplex the Rx inputs and Tx outputs to allow transceivers with Rx and Tx disable functions in 8 Ld packages.

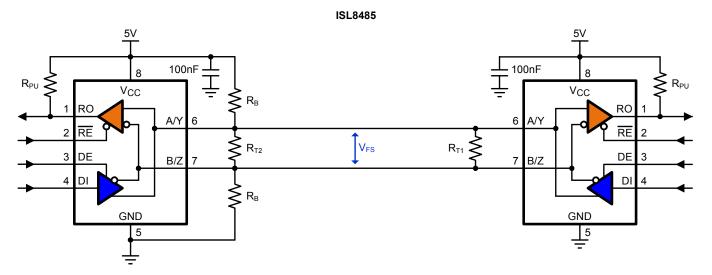
Related Literature

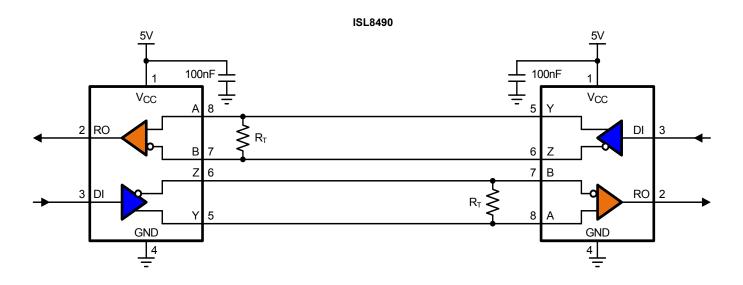
For a full list of related documents, visit our website:

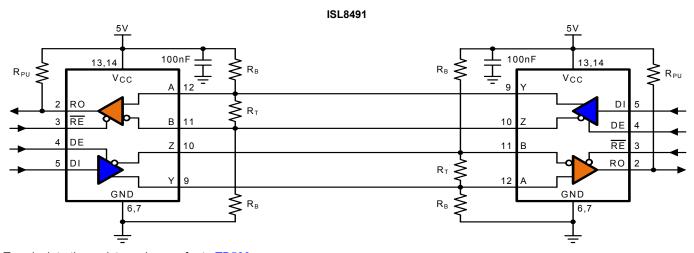
ISL8485, ISL8490, and ISL8491 product pages

Features

- · Specified for 10% tolerance supplies
- · Class 3 ESD protection (HBM) on all pins: 7kV
- High data rates: up to 5Mbps
- · Single unit load allows up to 32 devices on the bus
- Low quiescent current: 500µA
- -7V to +12V common-mode input voltage range
- Three state Rx and Tx outputs (except ISL8490)
- · 30ns propagation delays, 5ns skew
- · Full duplex and half duplex pinouts
- Operation from a single +5V supply (10% tolerance)
- Current limiting and thermal shutdown for driver overload protection
- · Pb-free plus anneal (RoHS compliant)


Applications


- · Factory automation
- · Security networks
- · Building environmental control systems
- · Industrial/process control networks
- · Level translators (for example, RS-232 to RS-422)


Page 1 of 16

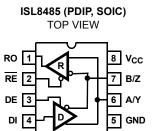
· RS-232 "extension cords"

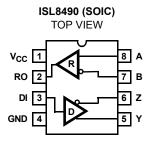
Typical Operating Circuits

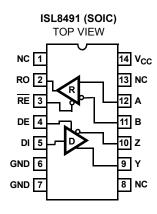
To calculate the resistor values, refer to <u>TB509</u>.

TABLE 1. SUMMARY OF FEATURES

PART NUMBER	HALF/FULL DUPLEX	NO. OF DEVICES ALLOWED ON BUS	DATA RATE (Mbps)	SLEW-RATE LIMITED?	RECEIVER/ DRIVER ENABLE?	QUIESCENT I _{CC} (μA)	LOW POWER SHUTDOWN?	PIN COUNT
ISL8485	Half	32	5	No	Yes	500	No	8
ISL8490	Full	32	5	No	No	500	No	8
ISL8491	Full	32	5	No	Yes	500	No	14


Ordering Information


PART NUMBER (Notes 2, 3)	PART MARKING	TEMP. RANGE (°C)	TAPE AND REEL (UNITS) (Note 1)	PACKAGE (RoHS COMPLIANT)	PKG. DWG. #
ISL8485CBZ	8485CBZ	0 to +70	-	8 Ld SOIC	M8.15
ISL8485CBZ-T	8485CBZ	0 to +70	2.5k	8 Ld SOIC Tape and Reel	M8.15
ISL8485CPZ (No longer available, recommended replacement: ISL8485ECBZ-T)	ISL8485CPZ	0 to +70	-	8 Ld PDIP (Note 4)	E8.3
ISL8485IBZ	8485IBZ	-40 to +85	-	8 Ld SOIC	M8.15
ISL8485IBZ-T	8485IB	-40 to +85	2.5k	8 Ld SOIC Tape and Reel	M8.15
ISL8485IPZ (No longer available, recommended replacement: ISL8485EIBZ-T)	ISL8485IPZ	-40 to +85	-	8 Ld PDIP (Note 4)	E8.3
ISL8490IBZ	8490IBZ	-40 to +85	-	8 Ld SOIC	M8.15
ISL8490IBZ-T	8490IBZ	-40 to +85	2.5k	8 Ld SOIC Tape and Reel	M8.15
ISL8491IBZ	8491IBZ	-40 to +85	-	14 Ld SOIC	M14.15


NOTE:

- 1. Refer to TB347 for details about reel specifications.
- Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate
 termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Pb-free products are MSL
 classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
- 3. For Moisture Sensitivity Level (MSL), refer to the <u>ISL8485</u>, <u>ISL8490</u>, and <u>ISL8491</u> product information pages. For more information about MSL, refer to <u>TB363</u>.
- 4. Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications

Pinouts

Pin Descriptions

PIN	FUNCTION
RO	Receiver output: RO is high if A > B by at least 0.2V; RO is low if A < B by 0.2V or more; RO = high if A and B are unconnected (floating).
RE	Receiver output enable. RO is enabled when \overline{RE} is low; RO is high impedance when \overline{RE} is high.
DE	Driver output enable. The driver outputs Y and Z are enabled by bringing DE high. They are high impedance when DE is low.
DI	Driver input. A low on DI forces output Y low and output Z high. Similarly, a high on DI forces output Y high and output Z low.
GND	Ground connection.
A/Y	Noninverting receiver input and noninverting driver output. Pin is an input (A) if DE = 0; pin is an output (Y) if DE = 1.
B/Z	Inverting receiver input and inverting driver output. Pin is an input (B) if DE = 0; pin is an output (Z) if DE = 1.
Α	Noninverting receiver input.
В	Inverting receiver input.
Υ	Noninverting driver output.
Z	Inverting driver output.
V _{CC}	System power supply input (4.5V to 5.5V).
NC	No connection.

Truth Tables

TRANSMITTING						
	INPUTS	OUTI	PUTS			
RE	DE	DI	Z	Y		
Х	1	1	0	1		
Х	1	0	1	0		
0	0	Х	High-Z	High-Z		

RECEIVING							
	INPUTS OUTPUT						
RE	DE Half Duplex	DE Full Duplex	A-B	RO			
0	0	X	≥ +0.2V	1			
0	0	Х	≤ -0.2V	0			
0	0	Х	Inputs Open	1			
1	1	1	Х	High-Z			

Absolute Maximum Ratings
V _{CC} to Ground
DI, DE, RE0.5V to (V _{CC} +0.5V)
Input/Output Voltages
A, B, Y, Z8V to +12.5V
RO0.5V to (V _{CC} +0.5V)
Short Circuit Duration
Y, Z Continuous
ESD Rating

HBM (Per MIL-STD-883, Method 3015.7) >7kV

Thermal Information

Thermal Resistance (Typical, Note 5)	θ_{JA} (°C/W)
8 Ld SOIC Package	170
8 Ld PDIP Package (Note 6)	140
14 Ld SOIC Package	120
Moisture Sensitivity (see TB363)	
All Packages	Level 1
Maximum Junction Temperature (Plastic Package)	+150°C
Maximum Storage Temperature Range65°	
Pb-Free Reflow Profile (SOIC only)	. see <u>TB493</u>

Operating Conditions

Temperature Range	
ISL84XXCX	0°C to +70°C
ISL84XXIX	40°C to +85°C

CAUTION: Stresses above those listed in Absolute Maximum Ratings can permanently damage the device. This is a stress only rating. Operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

- 5. θ_{JA} is measured with the component mounted on a low-effective thermal conductivity test board in free air. See <u>TB379</u> for details.
- 6. Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications.

Electrical Specifications Test Conditions: $V_{CC} = 4.5V$ to 5.5V; unless otherwise specified. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$, Note 7

PARAMETER	SYMBOL	TEST CONDITIONS		TEMP (°C)	MIN	TYP	MAX	UNIT
DC CHARACTERISTICS								
Driver Differential V _{OUT} (No Load)	V _{OD1}			Full	-	-	V _{CC}	V
Driver Differential V _{OUT} (with	V _{OD2}	R = $50Ω$ (RS-422), <u>Figure 1</u>		Full	2	3	-	V
Load)		R = 27Ω (RS-485), <u>Figu</u>	r <u>e 1</u>	Full	1.5	2.3	5	V
Change in Magnitude of Driver Differential V _{OUT} for Complementary Output States	ΔV _{OD}	R = 27Ω or 50Ω , Figure	1	Full	-	0.01	0.2	V
Driver Common-Mode V _{OUT}	V _{OC}	R = 27Ω or 50Ω , Figure	1	Full	-	-	3	V
Change in Magnitude of Driver Common-Mode V _{OUT} for Complementary Output States	ΔV _{OC}	R = 27Ω or 50Ω , Figure 1		Full	-	0.01	0.2	V
Logic Input High Voltage	V _{IH}	DE, DI, RE		Full	2	-	-	V
Logic Input Low Voltage	V _{IL}	DE, DI, RE		Full	-	-	8.0	V
Logic Input Current	I _{IN1}	DI (ISL8485, ISL8490, IS	DI (ISL8485, ISL8490, ISL8491)		-2	-	2	μΑ
	I _{IN1}	DE, RE (ISL8485, ISL84	91)	Full	-25	-	25	μΑ
Input Current (A, B), Note 10	I _{IN2}	DE = 0V, V _{CC} = 0V or	V _{IN} = 12V	Full	-	-	1	mA
		4.5 to 5.5V	V _{IN} = -7V	Full	-	-	-0.8	mA
Receiver Differential Threshold Voltage	V _{TH}	-7V ≤ V _{CM} ≤ 12V		Full	-0.2	-	0.2	V
Receiver Input Hysteresis	ΔV_{TH}	V _{CM} = 0V		25	-	70	-	mV
Receiver Output High Voltage	V _{OH}	I _O = -4mA, V _{ID} = 200mV		Full	3.5	-	-	V
Receiver Output Low Voltage	V _{OL}	I _O = -4mA, V _{ID} = 200mV		Full	-	-	0.4	V
Three-State (high impedance) Receiver Output Current	I _{OZR}	$0.4V \le V_O \le 2.4V$		Full	-	-	±1	μΑ
Receiver Input Resistance	R _{IN}	-7V ≤ V _{CM} ≤ 12V		Full	12	-	-	kΩ

Electrical Specifications Test Conditions: $V_{CC} = 4.5V$ to 5.5V; unless otherwise specified. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$, Note 7 (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS		TEMP (°C)	MIN	TYP	MAX	UNIT
No-Load Supply Current, Note 8	Icc							
		ISL8490, ISL8491, DE, [OI, $\overline{RE} = 0V \text{ or } V_{CC}$	Full	-	500	565	μΑ
		ISL8485, DI, RE = 0V or	DE = V _{CC}	Full	-	700	900	μΑ
		V _{CC}	DE = 0V	Full	-	500	565	μA
Driver Short-Circuit Current, V _O = High or Low	I _{OSD1}	DE = V_{CC} , $-7V \le V_Y$ or V_{CC}	/ _Z ≤ 12V, <u>Note 9</u>	Full	35	-	250	mA
Receiver Short-Circuit Current	I _{OSR}	$0V \le V_O \le V_{CC}$		Full	7	-	85	mA
SWITCHING CHARACTERISTICS	(ISL8485, IS	L8490, ISL8491)						
Driver Input to Output Delay	t _{PLH} , t _{PHL}	$R_{DIFF} = 54\Omega$, $C_L = 100p$	$R_{DIFF} = 54\Omega$, $C_L = 100pF$, Figure 2		18	30	50	ns
Driver Output Skew	t _{SKEW}	$R_{DIFF} = 54\Omega$, $C_L = 100pF$, Figure 2		Full	-	2	10	ns
Driver Differential Rise or Fall Time	t _R , t _F	$R_{DIFF} = 54\Omega$, $C_L = 100pF$, Figure 2		Full	3	11	25	ns
Driver Enable to Output High	t _{ZH}	C _L = 100pF, SW = GND, <u>Figure 3</u>		Full	-	17	70	ns
Driver Enable to Output Low	t _{ZL}	C _L = 100pF, SW = V _{CC} ,	Figure 3	Full	-	14	70	ns
Driver Disable from Output High	t _{HZ}	C _L = 15pF, SW = GND,	Figure 3	Full	-	19	70	ns
Driver Disable from Output Low	t _{LZ}	C _L = 15pF, SW = V _{CC} , <u>F</u>	igure 3	Full	-	13	70	ns
Receiver Input to Output Delay	t _{PLH} , t _{PHL}	Figure 4		Full	30	40	150	ns
Receiver Skew t _{PLH} - t _{PHL}	tskd	Figure 4		25	-	5	-	ns
Receiver Enable to Output High	t _{ZH}	C _L = 15pF, SW = GND, <u>Figure 5</u>		Full	-	9	50	ns
Receiver Enable to Output Low	t _{ZL}	C _L = 15pF, SW = V _{CC} , <u>Figure 5</u>		Full	-	9	50	ns
Receiver Disable from Output High	t _{HZ}	C _L = 15pF, SW = GND, <u>Figure 5</u>		Full	-	9	50	ns
Receiver Disable from Output Low	t _{LZ}	C _L = 15pF, SW = V _{CC} , <u>Figure 5</u>		Full	-	9	50	ns
Maximum Data Rate	f _{MAX}	Note 11		Full	5	-	-	Mbps

NOTES:

- 7. All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.
- 8. Supply current specification is valid for loaded drivers when DE = 0V.
- 9. Applies to peak current. See <u>"Typical Performance Curves" on page 10</u> for more information.
- 10. Devices meeting these limits are denoted as "single unit load (1 UL)" transceivers. The RS-485 standard allows up to 32 unit loads on the bus.
- 11. Ensured by characterization, but not tested.

Test Circuits and Waveforms

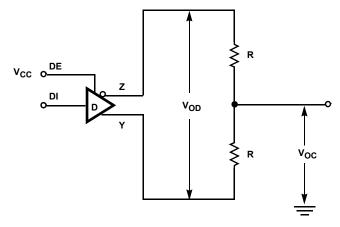
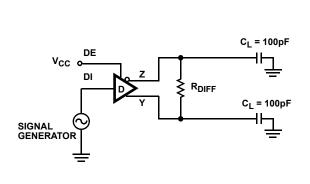
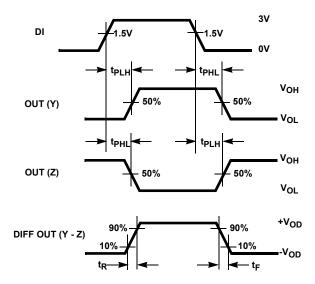




FIGURE 1. DRIVER $V_{\mbox{\scriptsize OD}}$ and $V_{\mbox{\scriptsize OC}}$

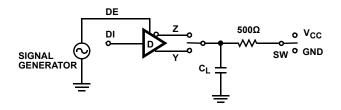

 $\mathsf{SKEW} = |\mathsf{t}_\mathsf{PLH} \, (\mathsf{Y} \, \, \mathsf{or} \, \, \mathsf{Z}) \, \cdot \, \mathsf{t}_\mathsf{PHL} \, (\mathsf{Z} \, \, \mathsf{or} \, \, \mathsf{Y})|$

FIGURE 2A. TEST CIRCUIT

FIGURE 2B. MEASUREMENT POINTS

FIGURE 2. DRIVER PROPAGATION DELAY AND DIFFERENTIAL TRANSITION TIMES

Test Circuits and Waveforms (Continued)

PARAMETER	OUTPUT	RE	DI	SW	C _L (pF)
t _{HZ}	Y/Z	Х	1/0	GND	15
t _{LZ}	Y/Z	Х	0/1	V _{CC}	15
t _{ZH}	Y/Z	0	1/0	GND	100
t _{ZL}	Y/Z	0	0/1	V _{CC}	100

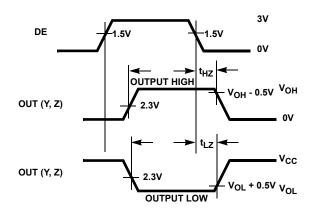


FIGURE 3A. TEST CIRCUIT

FIGURE 3B. MEASUREMENT POINTS

FIGURE 3. DRIVER ENABLE AND DISABLE TIMES (EXCLUDING ISL8490)

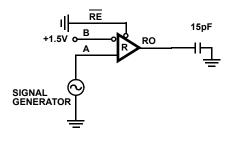


FIGURE 4A. TEST CIRCUIT

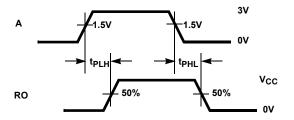
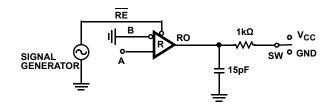



FIGURE 4B. MEASUREMENT POINTS

FIGURE 4. RECEIVER PROPAGATION DELAY

PARAMETER	DE	ΑΩ	SW
t _{HZ}	0	+1.5V	GND
t _{LZ}	0	-1.5V	V _{CC}
^t zH	0	+1.5V	GND
tzi	0	-1.5V	Vcc

FIGURE 5A. TEST CIRCUIT

FIGURE 5B. MEASUREMENT POINTS

FIGURE 5. RECEIVER ENABLE AND DISABLE TIMES (EXCLUDING ISL8490)

Application Information

RS-485 and RS-422 are differential (balanced) data transmission standards for use in long haul or noisy environments. RS-422 is a subset of RS-485, so RS-485 transceivers are also RS-422 compliant. RS-422 is a point-to-multipoint (multidrop) standard, which allows only one driver and up to 10 receivers on each bus, assuming one unit load devices. RS-485 is a true multipoint standard, which allows up to 32 one unit load devices (any combination of drivers and receivers) on each bus. To allow multipoint operation, the RS-485 specification requires that drivers must handle bus contention without sustaining any damage.

An important advantage of RS-485 is the extended Common-Mode Range (CMR), which specifies that the driver outputs and receiver inputs withstand signals that range from +12V to -7V. RS-422 and RS-485 are intended for runs as long as 4000ft, so the wide CMR is necessary to handle ground potential differences, as well as voltages induced in the cable by external fields.

Receiver Features

These devices use a differential input receiver for maximum noise immunity and common-mode rejection. Input sensitivity is ± 200 mV, as required by the RS-422 and RS-485 specifications.

Receiver input impedance surpasses the RS-422 specification of $4k\Omega$, and meets the RS-485 unit load requirement of $12k\Omega$ minimum.

Receiver inputs function with common-mode voltages as great as $\pm 7V$ outside the power supplies (+12V and -7V), making them ideal for long networks in which induced voltages are a realistic concern.

All the receivers include a "fail-safe if open" function that ensures a high level receiver output if the receiver inputs are unconnected (floating).

Receivers easily meet the data rates supported by the corresponding driver.

The ISL8485 and ISL8491 receiver outputs are three-statable using the active low $\overline{\text{RE}}$ input.

Driver Features

The RS-485/RS-422 driver is a differential output device that delivers at least 1.5V across a 54 Ω load (RS-485), and at least 2V across a 100 Ω load (RS-422). The drivers feature low propagation delay skew to maximize bit width and to minimize EMI.

The ISL8485 and ISL8491 drivers are three-statable using the active high DE input.

The ISL8485 and ISL8491 driver outputs are not limited, so faster output transition times allow data rates of at least 5Mbps.

Data Rate, Cables, and Terminations

RS-485/RS-422 are intended for network lengths up to 4000ft, but the maximum system data rate decreases as the transmission length increases. Devices operating at 5Mbps are limited to lengths less than 100ft.

Twisted pair cable is the cable of choice for RS-485/422 networks. Twisted pair cables tend to pick up noise and other electromagnetically induced voltages as common-mode signals, which are effectively rejected by the differential receivers in these ICs.

Proper termination is imperative to minimize reflections when using the 5Mbps devices.

In point-to-point networks or point-to-multipoint (single driver on bus) networks, terminate the main cable in its characteristic impedance (typically $120\Omega)$ at the end farthest from the driver. In multi-receiver applications, stubs connecting receivers to the main cable should be kept as short as possible. In multipoint (multi-driver) systems, terminate the main cable in its characteristic impedance at both ends. Keep stubs connecting a transceiver to the main cable as short as possible.

Built-In Driver Overload Protection

The RS-485 specification requires that drivers survive worst case bus contentions undamaged. The ISL84XX devices meet this requirement using driver output short circuit current limits and on-chip thermal shutdown circuitry.

The driver output stages incorporate short-circuit current limiting circuitry that ensures the output current never exceeds the RS-485 specification, even at the common-mode voltage range extremes. These devices also use a foldback circuit that reduces the short-circuit current, and thus the power dissipation, whenever the contending voltage exceeds either supply.

In the event of a major short-circuit condition, the ISL84XX devices' thermal shutdown feature disables the drivers whenever the die temperature becomes excessive. This eliminates the power dissipation, allowing the die to cool. The drivers automatically re-enable after the die temperature drops about 15°C. If the condition persists, the thermal shutdown/re-enable cycle repeats until the fault is cleared. Receivers stay operational during thermal shutdown.

Typical Performance Curves V_{CC} = 5V, T_A = 25°C, ISL8485, ISL8490, ISL8491; unless otherwise specified

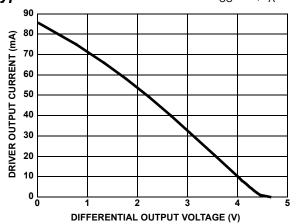


FIGURE 6. DRIVER OUTPUT CURRENT VS DIFFERENTIAL OUTPUT VOLTAGE

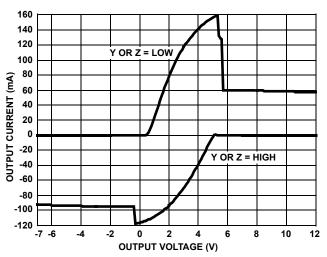


FIGURE 8. DRIVER OUTPUT CURRENT vs SHORT CIRCUIT VOLTAGE

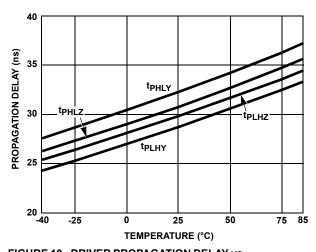


FIGURE 10. DRIVER PROPAGATION DELAY vs TEMPERATURE

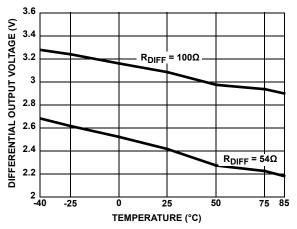


FIGURE 7. DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs TEMPERATURE

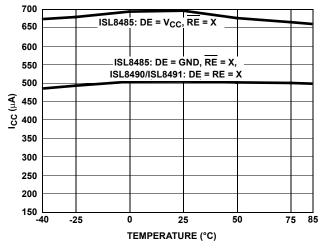


FIGURE 9. SUPPLY CURRENT vs TEMPERATURE

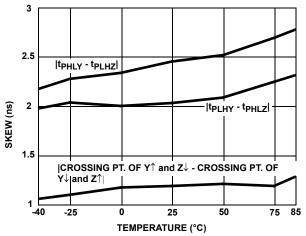


FIGURE 11. DRIVER SKEW vs TEMPERATURE

$\textbf{Typical Performance Curves} \ \ V_{CC} = 5V, \ T_A = 25^{\circ}C, \ ISL8485, \ ISL8490, \ ISL8491; \ unless otherwise specified \ \textbf{(Continued)}$

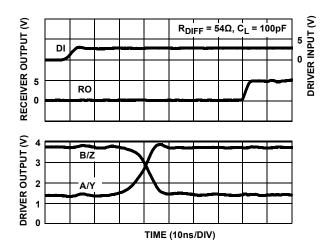


FIGURE 12. DRIVER AND RECEIVER WAVEFORMS, LOW TO HIGH

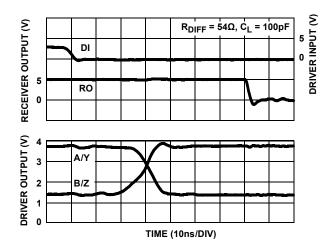


FIGURE 13. DRIVER AND RECEIVER WAVEFORMS, HIGH TO LOW

Die Characteristics

SUBSTRATE POTENTIAL (POWERED UP):

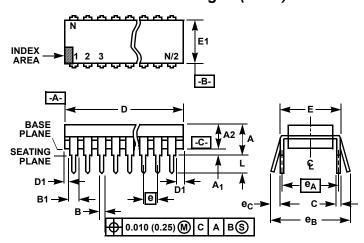
GND

TRANSISTOR COUNT:

518

PROCESS:

Si Gate CMOS


Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please visit out website to make sure that you have the latest revision.

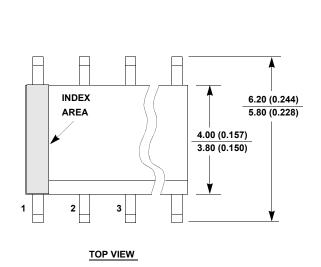
DATE	REVISION	CHANGE		
Oct 18, 2018	FN6046.10	Removed ISL8483, ISL8488, and ISL8489 information from the datasheet. Updated Typical Operating Circuits on page 2. Updated Features bullets on page 1. Added Related Literature section to page 1. Updated Ordering Information table on page 3: -Added Tape and Reel columnAdded information about replacements for the ISL8485CPZ and ISL8485IPZ. Removed About Intersil section and updated Renesas disclaimer.		
Feb 16, 2016	FN6046.9	Added Rev History and About Intersil verbiage. Updated "Ordering Information" table on page 3. Updated following PODs to current revisions listing POD updates: POD M8.15: Updated to new POD format by removing table and moving dimensions onto drawing and adding land pattern Changed in Typical Recommended Land Pattern the following: 2.41(0.095) to 2.20(0.087) 0.76 (0.030) to 0.60(0.023) 0.200 to 5.20(0.205) Changed Note 1 "1982" to "1994 POD M14.15 Added land pattern and moved dimensions from table onto drawing		

For the most recent package outline drawing, see <u>E8.3</u>.

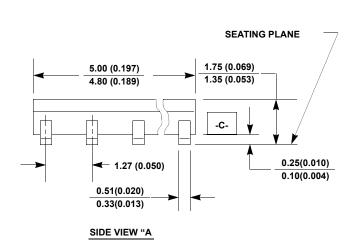
Package Outline Drawings Dual-In-Line Plastic Packages (PDIP)

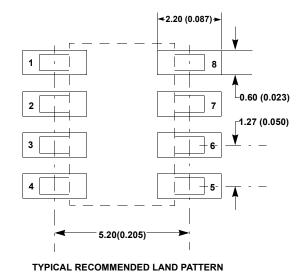
NOTES:

- Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- 3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
- Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3.
- D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).
- 6. E and ea are measured with the leads constrained to be perpendicular to datum -C-
- 7. e_B and e_C are measured at the lead tips with the leads unconstrained. e_C must be zero or greater.
- B1 maximum dimensions do not include dambar protrusions.
 Dambar protrusions shall not exceed 0.010 inch (0.25mm).
- 9. N is the maximum number of terminal positions.
- Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).

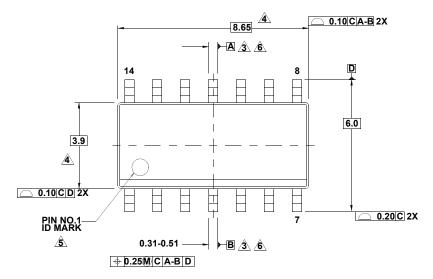

E8.3 (JEDEC MS-001-BA ISSUE D) 8 LEAD DUAL-IN-LINE PLASTIC PACKAGE

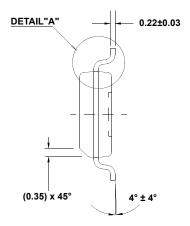
	INC	HES	MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	-	0.210	-	5.33	4
A1	0.015	-	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
В	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.15	1.77	8, 10
С	0.008	0.014	0.204	0.355	-
D	0.355	0.400	9.01	10.16	5
D1	0.005	-	0.13	-	5
Е	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
е	0.100	BSC	2.54 BSC		-
e _A	0.300	BSC	7.62 BSC		6
e _B	-	0.430	-	10.92	7
L	0.115	0.150	2.93	3.81	4
N	3	3	8		9


Rev. 0 12/93

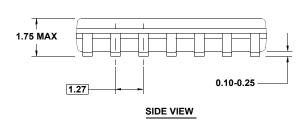

M8.158 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE
Rev 4, 1/12

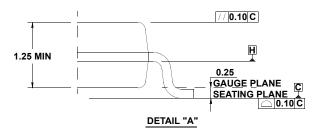
For the most recent package outline drawing, see M8.15.

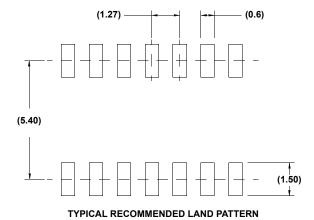



NOTES:

- 1. Dimensioning and tolerancing per ANSI Y14.5M-1994.
- Package length does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side.
- 3. Package width does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.
- 4. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
- 5. Terminal numbers are shown for reference only.
- The lead width as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch).
- Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.
- 8. This outline conforms to JEDEC publication MS-012-AA ISSUE C.


M14.15 14 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE Rev 1, 10/09


For the most recent package outline drawing, see M14.15.



TOP VIEW

NOTES:

- 1. Dimensions are in millimeters. Dimensions in () for Reference Only.
- 2. Dimensioning and tolerancing conform to AMSEY14.5m-1994.
- 3. Datums A and B to be determined at Datum H.
- 4. Dimension does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25mm per side.
- 5. The pin #1 indentifier may be either a mold or mark feature.
- 6. Does not include dambar protrusion. Allowable dambar protrusion shall be 0.10mm total in excess of lead width at maximum condition.
- 7. Reference to JEDEC MS-012-AB.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for ration or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment: industrial robots: etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Corporation TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

Renesas Electronics America Inc.

1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A. Tel: +1-408-432-8888, Fax: +1-408-434-5351

Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3

9251 Yonge Street, St. Tel: +1-905-237-2004

Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China Tel: +86-21-2226-0898, Fax: +86-21-2226-0999

Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Hong Kong Limited

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 rp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tel: +82-2-558-3737, Fax: +82-2-558-5338

© 2018 Renesas Electronics Corporation. All rights reserved.