

DUAL OPERATIONAL AMPLIFIER

DESCRIPTION

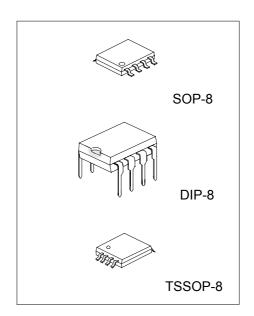
The RC4580 is the dual operational amplifier, specially designed for improving the tone control, which is most suitable for the audio application.

Featuring noiseless, higher gain bandwidth, high output current and low distortion ratio, and it is most suitable not only for acoustic electronic parts of audio pre-amp and active filter, but also for the industrial measurement tools. It is also suitable for the head phone amp at higher output current, and further more, it can be applied for the handy type set operational amplifier of general purpose in application of low voltage single supply type which is properly biased of the input low voltage source.

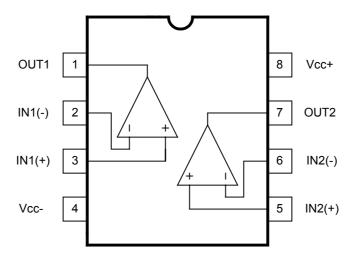
FEATURES

*Operating Voltage

*Low Input Noise Voltage

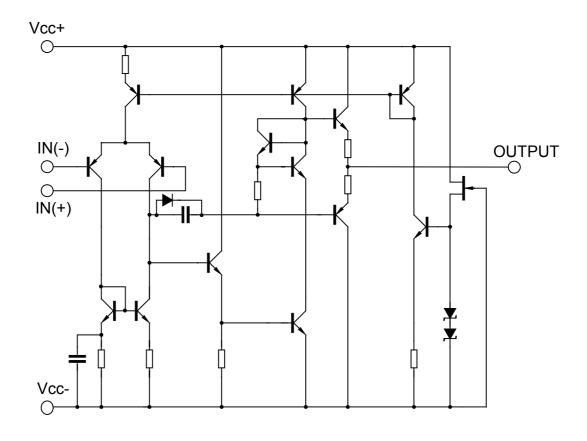

*Wide Gain Bandwidth Product

*Low Distortion


*Slew Rate

*Bipolar Technology

 $(\pm 2V \text{ to} \pm 16V)$ (0.8 µ Vrms typ.) (15MHz typ.) (0.0005% typ.) (5V/μs typ.)



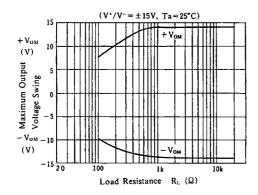
PIN CONFIGURATION

TEST CIRCUIT

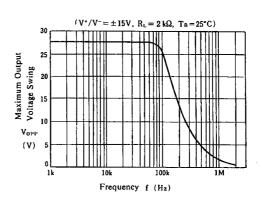
ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT						
Supply Voltage	V ⁺ /V ⁻	±16	V						
Input Voltage	V _{IC}	±15	V						
Differential Input Voltage	V_{ID}	±30	V						
Output Current	lo	±50	mA						
Power Dissipation	Pb	300 (SOP-8) 800 (DIP-8) 250(TSSOP-8)	mW						
Operating Temperature Range	Topr	-40 to+85	°C						
Storage Temperature Range	Tstg	-40 to +125	°C						

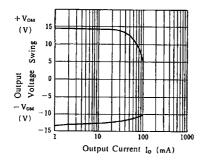
2018 MAR

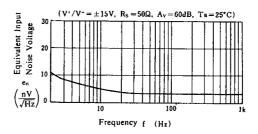


ELECTRICAL	. CHARACTERISTICS	(V ⁺ /V ⁻ =±15V. Ta=25°C)
-------------------	-------------------	--	---

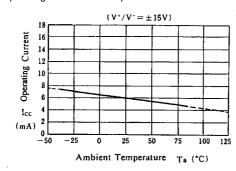

	\	, , , , , , , , , , , , , , , , , , , ,				
PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Input Offset Voltage	Vio	R _S ≤10kΩ	-	0.5	3	mV
Input Offset Current	lio		-	5	200	nA
Input Bias Current	lв		-	100	500	nA
Large Signal Voltage Gain	Av	Vo= \pm 10V, R _L ≥2kΩ	90	110	-	dB
Output Voltage Swing	Vом	$R_L>=2k\Omega$	±12	±13.5	-	V
Input Common Mode Voltage Range	VICM		±12	±13.5	-	V
Common Mode Rejection Ratio	CMR	R _S ≤10kΩ	80	110	-	dB
Supply Voltage Rejection Ratio	SVR	Rs≤10kΩ	80	110	-	dB
Operating Current	Icc		-	6	9	mA
Slew Rate	SR	R _L ≥2kΩ	-	5	-	V/μs
Gain bandwidth Product	GB	f=10KHz	-	15	-	MHz
Total Harmonic Distortion	THD	Av=20dB,Vo=5V, R_L =2k Ω , f=1KHz	-	0.0005	-	%
Input Noise Voltage	Vni	RIAA Rs=2.2 kΩ,30kHzLPF	-	0.8	-	μVrms

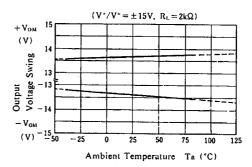
TYPICAL CHARACTERISTICS

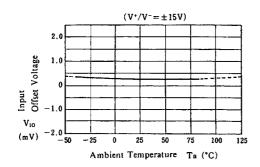

Maximum Output Voltage Swing vs. Load Resistance

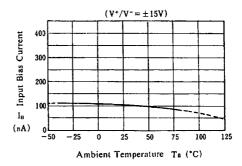

Maximum Output Voltage Swing vs. Frequency

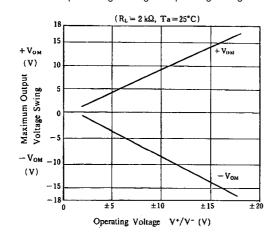
Output Voltage Swing vs. Output Current


Equivalent Input Noise Voltage vs. Frequency

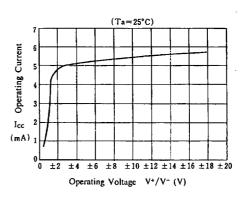

3


Operating Current vs. Temperature


Output Voltage Swing vs. Temperature

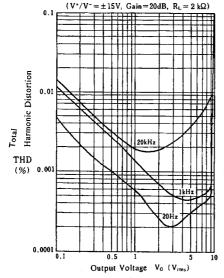

Input Offset Voltage vs. Temperature

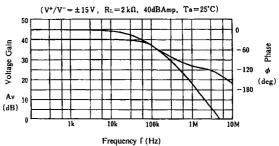
Input Bias Current vs. Temperature



Maximum Output Voltage Swing vs. Operating Voltage

4


Operating Current vs. Operating Voltage



Total Harmonic Distortion vs. Output Voltage

Voltage Gain, Phase vs. Frequency

Important statement:

Huaguan Semiconductor Co,Ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information.

Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage.

Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields.

Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents.