### General Description

The GH266A is an integrated Hall sensor with output driver designed for electronic commutation of brush-less DC motor applications. The device includes an on-chip Hall sensor for magnetic sensing, an amplifier that amplifies the Hall voltage, a wave shaping circuit to provide switching hysteresis for noise rejection and two complementary open-drain drivers for sinking large load current. It also includes an internal voltage regulator which allows a wide operating supply voltage ranges.

Placing the device in a variable magnetic field, if the magnetic flux density is larger than threshold  $B_{OP}$ , the pin OUT1 will be turned low (on) and pin OUT2 will be turned high (off). This output state is held until the magnetic flux density reverses and falls below  $B_{RP}$ , then causes OUT1 to be turned high (off) and OUT2 turned low (on). GH266A is

rated for operation over temperature range from -40°C to +85  $^{\circ}$ C and voltage range from 3.5V to 28V.

The GH266A is available in TO-94 (SIP-4L) package.

#### Features

- On Chip Hall Effect Sensor
- 3.5~28V Power Supply Voltage
- Drivers Allow 400mA Without Overheating
- Built-in Zener Diodes Protection for Output Driver
- Embedded Over-Temperature Protection
- Precise Magnetic Switching Thresholds

### Applications

- Dual-coil Brushless DC Fan
- Dual-coil Brushless DC Motor

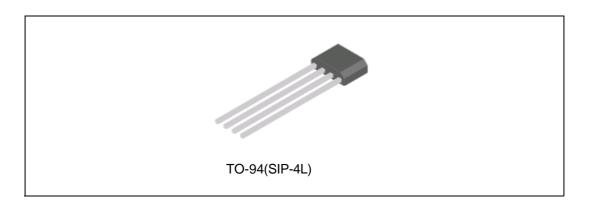



Figure 1. Package Type of GH266A

### Ordering Information

| Package       | Temperature Range | Part Number | Marking ID | Packing Type |
|---------------|-------------------|-------------|------------|--------------|
| TO-94(SIP-4L) | -40 to 85 ℃       | GH266AEUB   | GH266A     | Bulk         |

## **♦** Pin Configuration

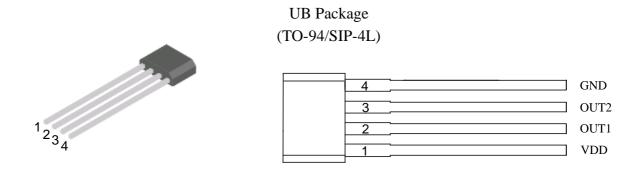



Figure 2. Pin Configuration of GH266A (Front View)

## **♦** Pin Description

| Pin Number | Pin Name | Function                |  |
|------------|----------|-------------------------|--|
| 1          | VDD      | Power Supply Pin        |  |
| 2          | OUT1     | Open-Drain Output Pin 1 |  |
| 3          | OUT2     | Open-Drain Output Pin 2 |  |
| 4          | GND      | Ground Pin              |  |

## ◆ Functinal Block Diagram

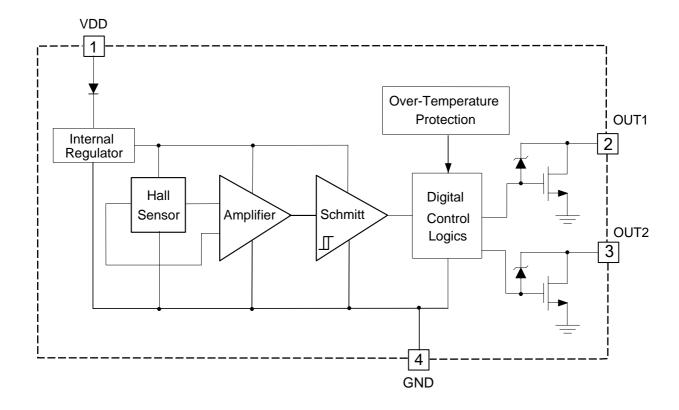



Figure 3. Functional Block Diagram of GH266A

# **♦ Absolute Maximum Ratings** T<sub>A</sub> =25°C (Note 1)

| Parameter                                | Symbol                 | Condition          | Value      | Unit          |
|------------------------------------------|------------------------|--------------------|------------|---------------|
| Supply Voltage (Continuous)              | V <sub>DD(CONT)</sub>  |                    | 30         | V             |
| Supply Voltage (Peak)                    | $V_{\text{DD(PEAK)}}$  | ≤100s              | 40         | V             |
| Supply current (Fault)                   | $I_{DD(FAULT)}$        |                    | 3.5        | mA            |
| Continuous current                       | I <sub>OUT(CONT)</sub> |                    | 400        | mA            |
| Hold current                             | I <sub>OUT(HOLD)</sub> |                    | 600        | mA            |
| Peak current                             | I <sub>OUT(PEAK)</sub> | ≤200μ <sub>S</sub> | 800        | mA            |
| Power dissipation                        | $P_{\mathrm{D}}$       | TO-94(SIP-4L)      | 550        | mW            |
| Thermal Resistance (Junction to Ambient) | $\theta_{\mathrm{JA}}$ | TO-94(SIP-4L)      | 227        | °C/W          |
| Thermal Resistance (Junction to Case)    | $\theta_{JC}$          | TO-94(SIP-4L)      | 49         | °C/W          |
| Operating Junction temperature           | $T_{J}$                |                    | -40 to 150 | ${\mathbb C}$ |
| Storage temperature                      | $T_{STG}$              |                    | -55 to 160 | $^{\circ}$ C  |
| Output Clamp Voltage of Zener Diode      | $V_{Z}$                |                    | 43         | V             |
| Magnetic Flux Density                    | В                      |                    | Unlimited  | Gauss         |
| IR-Reflow Lead Temperature               | $T_{P}$                | 10s                | 260        | ${\mathbb C}$ |

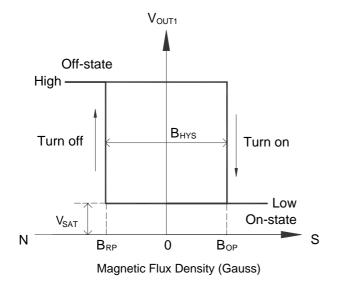
## Recommended Operating Conditions

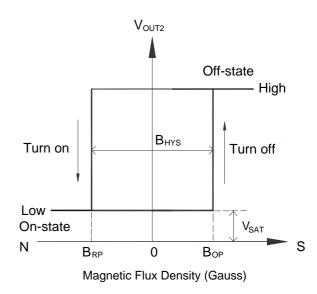
| Parameter             | Symbol         | Min | Max | Unit       |
|-----------------------|----------------|-----|-----|------------|
| Power Supply Voltage  | $V_{ m DD}$    | 3.5 | 28  | V          |
| Operation Temperature | T <sub>A</sub> | -40 | 85  | $^{\circ}$ |

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated above "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.



### **♦ Electrical Characteristics**


 $V_{DD} = 24V$ ,  $T_A = 25$ °C, unless otherwise specified.


| Parameter                    | Symbol                                           | Conditions            | Min | Тур | Max | Unit                   |
|------------------------------|--------------------------------------------------|-----------------------|-----|-----|-----|------------------------|
| Supply Voltage               | $V_{DD}$                                         | Operating             | 3.5 | -   | 28  | V                      |
| Supply Current               | $I_{DD}$                                         | Output open           | -   | 1.3 | 2.5 | mA                     |
| Output Current               | I <sub>OUT</sub>                                 |                       | -   |     | 400 | mA                     |
| Output Leakage Current       | I <sub>LEAKAGE</sub>                             | V <sub>OUT</sub> =28V | -   | 0.1 | 10  | μΑ                     |
| Output Driver ON-Resistance  | $R_{DSON}$ $T_A=25 ^{\circ}C$ $T_A=85 ^{\circ}C$ | 1.0                   | 1.4 | Ohm |     |                        |
| Output Bilver Oiv Resistance |                                                  | T <sub>A</sub> =85 °C | -   | 1.4 | 1.8 | Ohm                    |
| Thermal Shutdown Threshold   | $T_{SD}$                                         |                       | 165 | -   | -   | $^{\circ}\!\mathbb{C}$ |

### **◆ Magnetic Characteristics**

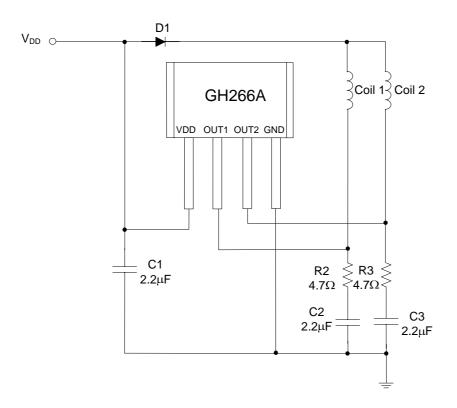
 $V_{DD}$  =12V,  $T_A$  =25°C, unless otherwise specified.

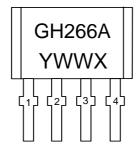
| Parameter       | Symbol           | Min | Тур | Max | Unit  |
|-----------------|------------------|-----|-----|-----|-------|
| Operating Point | B <sub>OP</sub>  | -   | 30  | 60  | Gauss |
| Releasing Point | $B_{RP}$         | -60 | -30 | -   | Gauss |
| Hysteresis      | B <sub>HYS</sub> | -   | 60  | -   | Gauss |





### **◆** Typical Application





Figure 6. Typical Application of GH266A

#### Note:

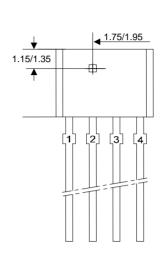
- 1. D1 is an ordinary diode used to filter the noise from VDD and It is optional.
- 2.  $C1=C2=C3=2.2\mu F$  typical, electrolytic capacitors are better. They should be fine tuned based on system design.
- 3.  $R2=R3=4.7\Omega$  typical. They can be cancelled according to system requirement.

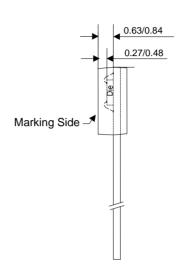
## Marking Information

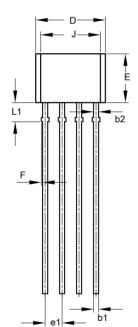
(TO-94/SIP-4L)

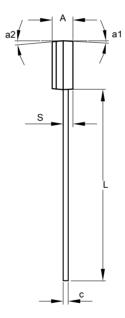


GH266A: Part No.


Y: Year, 0~9, ex: "7"=2017 WW: Nth Week, 01~52 X: Internal Code

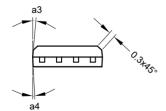

7. Internal Cour





## **♦** Pacakge Information

(UB: TO-94/SIP-4L) Unit: mm










| b1       | 0.38  | 0.44  | 0.40  |  |  |
|----------|-------|-------|-------|--|--|
| b2       | -     | -     | 0.48  |  |  |
| С        | 0.35  | 0.45  | 0.40  |  |  |
| D        | 5.12  | 5.32  | 5.22  |  |  |
| e1       | 1.24  | 1.30  | 1.27  |  |  |
| Е        | 3.55  | 3.75  | 3.65  |  |  |
| F        | 0.00  | 0.20  | -     |  |  |
| J        | 4.10  | 4.30  | 4.20  |  |  |
| L        | 14.00 | 14.60 | 14.30 |  |  |
| L1       | 1.32  | 1.52  | 1.42  |  |  |
| S        | 0.63  | 0.83  | 0.73  |  |  |
| a1       | -     | 5°    | 3°    |  |  |
| a2       | 4°    | 7°    | 5°    |  |  |
| а3       | 10°   | 12°   | 11°   |  |  |
| a4       | 5°    | 7°    | 6°    |  |  |
| Unit: mm |       |       |       |  |  |
|          |       |       |       |  |  |

Size MIN.

