

SolidMatrix[®] Surface Mount Fuses HC Series (High Current), 1206 Size

Clearing Time Characteristics:

% of current rating	Clearing time at 25°C
100%	4 hours min.
350%	5 seconds max.

Agency Approval:

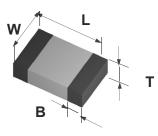
Recognized Under the Components Program of UL. File Number: E232989.

Patents:

Patent numbers "US6,034,589", "US6,602,766", "US6,844,278", "ZL00134544.3", "ZL02114719.1", "ZL201020551360.8", "ZL201010299185.2", "ZL201220030614.0", "ZL201210020693.1".

Ordering Information:

Features:


- High inrush current withstanding capability at high voltage •
- Glass ceramic monolithic structure
- Sliver fusing element and silver termination with nickel and tin plating
- Superior arc suppression capability
- RoHS compliant and lead free materials
- Operating temperature range: -55°C to +150°C (with derating)

Shape and Dimensions:

Unit	Inch	mm
L	0.126 ± 0.008	3.20 ± 0.20
w	0.063 ± 0.008	1.60 ± 0.20
T1	0.038 ± 0.008	0.97 ± 0.20
T2	0.051 ± 0.008	1.30 ± 0.20
В	0.020 ± 0.010	0.51 ± 0.25

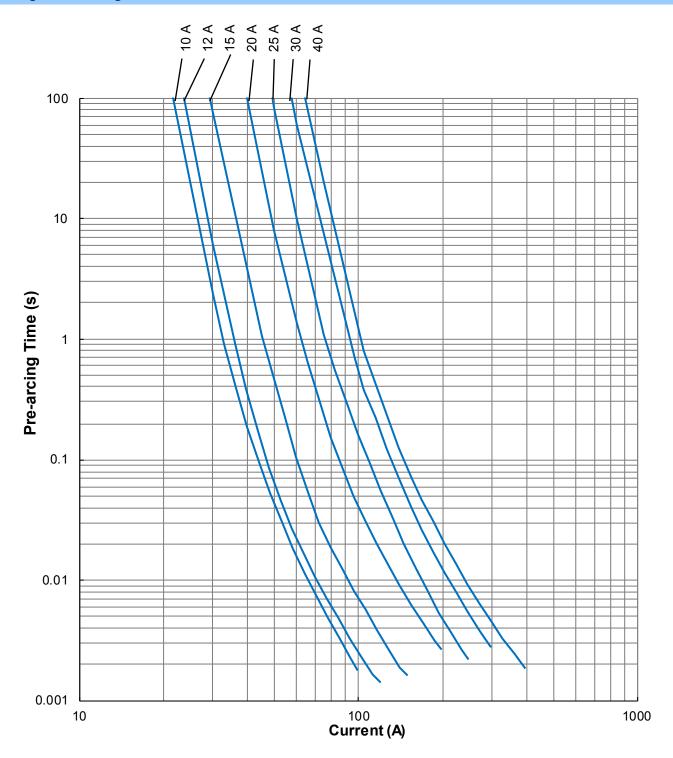
T1: Thickness for 10-25A:

T2: Thickness for 30-40A.

Part Number	Current Rating (A)	Voltage Rating (VDC)	Interrupting Ratings	Nominal Cold $DCR(\Omega)^1$	Nominal I ² t (A ² s) ²	Marking Code ³
F1206HC10A0TM	10	35		0.0055	15	Q
F1206HC12A0TM	12	35	1504@25\/DC	0.0045	20	Х
F1206HC15A0TM	15	35	150A@35VDC	0.0032	35	Y
F1206HC20A0TM	20	35		0.0023	80	Z
F1206HC25A0TM	25	35	200A@35VDC	0.0016	120	S
F1206HC30A0TM	30	35	200A@35VDC	0.0012	180	V
F1206HC40A0TM	40	35	300A@26VDC	0.0009	240	0

1. Measured at ≤ 10% rated current and 25°C ambient.

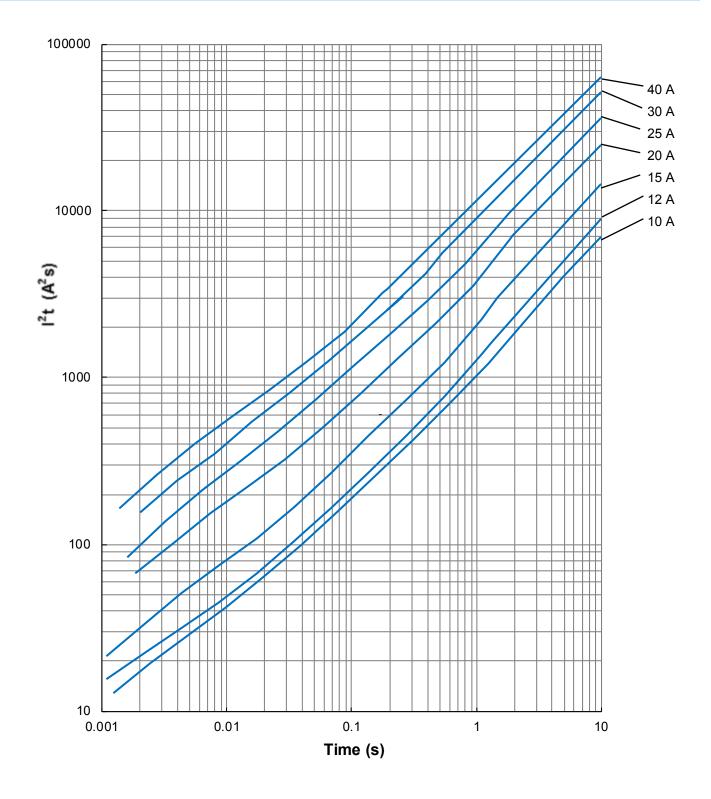
Metasured area for a fact content and 25 Cambers.
Metting I⁴t at 1000% of current rating.
Blue Marking Character Code. Devices designed to be mounted with marking code facing up.



Revision of March 2018

SolidMatrix[®] Surface Mount Fuses HC Series (High Current), 1206 Size

Average Pre-arcing Time Curves:

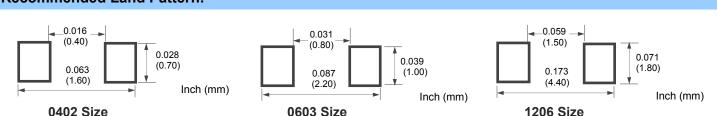


Revision of March 2018

SolidMatrix[®] Surface Mount Fuses HC Series (High Current), 1206 Size

Average I²t vs. t Curves:

Revision of March 2018


SolidMatrix[®] Surface Mount Fuses

Product Identification:

- <u>F 0603 FA 1000 V032 T M</u>
- (1) (2) (3) (4) (5) (6) (7)
- (1) Product Code: F-Chip Fuse
- (2) Size Code: Standard EIA Chip Sizes
- (3) Series Code: FA Fast Acting, SB Slow Blow,HI High Inrush, FF Very Fast Acting, HB High Current
- (4) Current Rating Code: 1000 1000 mA (For HB, 10 10A)
- (5) Voltage Rating Code: V032 32 VDC
- (6) Package Code: T Tape & Reel, B Bulk
- (7) Marking Code: M With Marking

Recommended Land Pattern:

- <u>F 1206 HC 20A0 T M</u>
- (1) (2) (3) (4) (5) (6)
- (1) Product Code: F-Chip Fuse
- (2) Size Code: L x W (inch), the first two digits-L (length), the last two digits-W (width)
- (3) Series Code: HC Series
- (4) Current Rating Code: 20A0-20.0A
- (5) Package Code: T Tape & Reel, B Bulk

Environmental Tests:

No.	Test	Requirement	Test condition	Test reference
1	Soldering heat resistance	DCR change $\leq \pm 10\%$ No mechanical damage	One dip at 260°C for 60 seconds	MIL-STD-202 Method 210
2	Solderability	Minimum 95% coverage	One dip at 245°C for 5 seconds	MIL-STD-202 Method 208
3	Thermal shock	DCR change ≤ ±10% No mechanical damage	100 cycles between -65°C and +125°C	MIL-STD-202 Method 107
4	Moisture resistance	DCR change $\leq \pm 15\%$ No excessive corrosion	10 cycles	MIL-STD-202 Method 106
5	Salt spray	DCR change $\leq \pm 10\%$ No excessive corrosion	48 hour exposure	MIL-STD-202 Method 101
6	Mechanical vibration	DCR change $\leq \pm 10\%$ No mechanical damage	0.4 " D.A. or 30 G between 5 – 3000 Hz	MIL-STD-202 Method 204
7	Mechanical shock	DCR change $\leq \pm 10\%$ No mechanical damage	1500 G, 0.5 ms, half-sine shocks	MIL-STD-202 Method 213
8	Life	No electrical "opens" during testing voltage drop change shall be less than $\pm 20\%$ of initial value	for 2000 hours at ambient temperature	Refer to AEM QIQ106

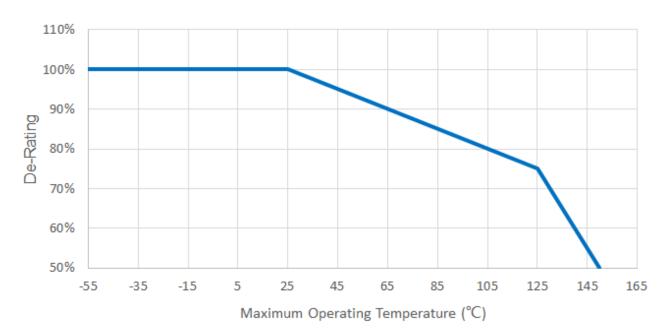
SolidMatrix[®] Surface Mount Fuses

Electrical Specification:

Clearing Time Characteristics: Same as specified on the Short Form Data Sheet **Insulation Resistance after Opening:** 20,000 ohms typical when cleared with rated voltage applied. Fuse clearing under low voltage conditions may result in lower after clearing insulation resistance values. (Note: Under normal fault conditions (low or rated voltage

in lower after clearing insulation resistance values. (Note: Under normal fault conditions (low or rated voltage conditions), AEM SolidMatrix fuses provide sufficient after clearing insulation resistance values for circuit protection.) **Current Carrying Capacity:**

100% rated current at +25°C ambient for 4 hours minimum when evaluated per MIL-PRF-23419 **Interrupt Ratings:**


Fuse Selection and Temperature De-rating Guideline:

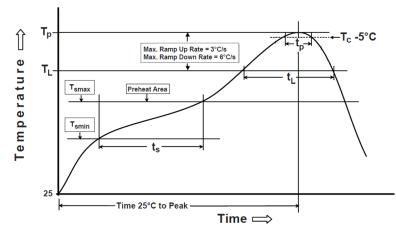
The ambient temperature affects the current carrying capacity of fuses. When a fuse is operating at a temperature higher than 25°C, the fuse shall be "de-rated".

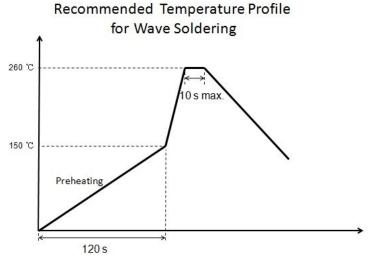
To select a fuse from the catalog, the following rule may be followed:

Catalog Fuse Current Rating = Nominal Operating Current / 0.75 / % De-rating at the maximum operating temperature.

Example: At maximum operating temperature of 65° C, % De-rating is 90%. The nominal operating current is 4 A. The current rating for fuse selected from the catalog shall be: 4 / 0.75 / 90% = 5.9 or 6 A. Specifications and descriptions in this literature are as accurate as known at the time of publish, but are subject to change without notice.

Temperature De-Rating Curve for SolidMatrix Fuses




SolidMatrix[®] Surface Mount Fuses

Soldering Temperature Profile:

* Recommended Temperature Profile for Wave Soldering

Packaging:

Chip Size	Parts on 7 inch (178 mm) Reel
0402 (1005)	10,000
0603 (1608)	4,000
0603FF (1608)	6,000
1206 (3216)	3,000

Profile Feature	Pb-Free Assembly	
Preheat/Soak Temperature Min (T _{smin}) Temperature Max(T _{smax}) Time(t _s) from (T _{smin} to T _{smax})	150°C 200°C 60~120 seconds	
Ramp-uprate (T_L to T_p)	3°C/second max.	
Liquidous temperature(T _L) Time(t _L) maintained above T _L	217°C 60~150 seconds	
Peak package body temperature (T_p)	260°C	
Time $(t_p)^*$ within 5°C of the specified classification temperature (T_c)	30 seconds *	
Ramp-down rate $(T_p \text{ to } T_L)$	6°C/second max.	
Time 25°C to peak temperature	8 minutes max.	
* Tolerance for peak profile temperature $(T_{\rm p})$ is defined as a supplier minimum and a user maximum		

Disclaimer

Specifications are subject to change without notice. AEM products are designed for specific applications and should not be used for any purpose (including, without limitation, automotive, aerospace, medical, life-saving applications, or any other application which requires especially high reliability for the prevention of such defect as may directly cause damage to the third party's life, body or property) not expressly set forth in applicable AEM product documentation. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Warranties granted by AEM shall be deemed void for products used for any purpose not expressly set forth in applicable AEM product documentation. AEM shall not be liable for any claims or damages arising out of products used in applications not expressly intended by AEM as set forth in applicable AEM product documentation. The sale and use of AEM products is subject to AEM terms and conditions of sale. Please refer