

Sample &

Buy



TPS2556, TPS2557

SLVS931B-NOVEMBER 2009-REVISED DECEMBER 2016

# **TPS255x Precision Adjustable Current-Limited Power-Distribution Switches**

Technical

Documents

## 1 Features

- Meets USB Current-Limiting Requirements
- Adjustable Current Limit, 500 mA to 5 A (Typical)
- ±6.5% Current-Limit Accuracy at 4.5 A
- Fast Overcurrent Response: 3.5-µs (Typical)
- 22-mΩ High-Side MOSFET
- Operating Voltage: 2.5 V to 6.5 V
- 2-µA Maximum Standby Supply Current
- Built-in Soft Start
- 15-kV and 8-kV System-Level ESD Capable
- UL Listed: File No. E169910 and CB IEC60950-1am2 ed2.0

## 2 Applications

- USB Ports and Hubs
- Digital TVs
- Set-Top Boxes
- VOIP Phones

## 3 Description

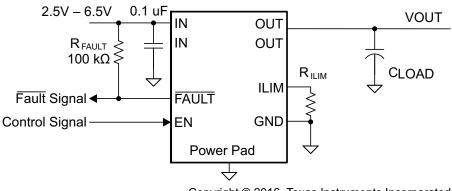
Tools &

Software

The TPS255x power-distribution switch is intended for applications where precision current limiting is required or heavy capacitive loads and short circuits encountered. These devices are offer а programmable current-limit threshold between 500 mA and 5 A (typical) through an external resistor. The power-switch rise and fall times are controlled to minimize current surges during turnon and turnoff.

Support &

Community


20

TPS255x devices limit the output current to a safe level by switching into a constant-current mode when the output load exceeds the current-limit threshold. The FAULT logic output asserts low during overcurrent and overtemperature conditions.

#### Device Information<sup>(1)</sup>

| PART NUMBER      | PACKAGE  | BODY SIZE (NOM)   |
|------------------|----------|-------------------|
| TPS2556, TPS2557 | VSON (8) | 3.00 mm × 3.00 mm |

(1) For all available packages, see the orderable addendum at the end of the data sheet.



## Typical Application as USB Power Switch

Copyright © 2016, Texas Instruments Incorporated

TEXAS INSTRUMENTS

www.ti.com

## **Table of Contents**

| 1 | Feat | tures 1                            |
|---|------|------------------------------------|
| 2 | Арр  | lications1                         |
| 3 | Des  | cription1                          |
| 4 | Rev  | ision History 2                    |
| 5 | Dev  | ice Comparison Table 3             |
| 6 | Pin  | Configuration and Functions        |
| 7 | Spe  | cifications                        |
|   | 7.1  | Absolute Maximum Ratings 4         |
|   | 7.2  | ESD Ratings 4                      |
|   | 7.3  | Recommended Operating Conditions 4 |
|   | 7.4  | Thermal Information 5              |
|   | 7.5  | Electrical Characteristics5        |
|   | 7.6  | Switching Characteristics 6        |
|   | 7.7  | Typical Characteristics 7          |
| 8 | Para | ameter Measurement Information 10  |
| 9 | Deta | ailed Description 11               |
|   | 9.1  | Overview 11                        |
|   | 9.2  | Functional Block Diagram 11        |
|   |      |                                    |

|    | 9.3  | Feature Description 11                             |
|----|------|----------------------------------------------------|
|    | 9.4  | Device Functional Modes 12                         |
| 10 | Арр  | lication and Implementation13                      |
|    | 10.1 | Application Information 13                         |
|    | 10.2 | Typical Applications 13                            |
| 11 | Pow  | ver Supply Recommendations 18                      |
| 12 |      | out                                                |
|    | 12.1 | Layout Guidelines 19                               |
|    | 12.2 | Layout Example 19                                  |
|    | 12.3 | Thermal Considerations 20                          |
| 13 | Dev  | ice and Documentation Support 21                   |
|    | 13.1 | Related Links 21                                   |
|    | 13.2 | Receiving Notification of Documentation Updates 21 |
|    | 13.3 | Community Resources 21                             |
|    | 13.4 | Trademarks 21                                      |
|    | 13.5 | Electrostatic Discharge Caution 21                 |
|    | 13.6 | Glossary                                           |
| 14 |      | hanical, Packaging, and Orderable<br>mation        |

## **4** Revision History

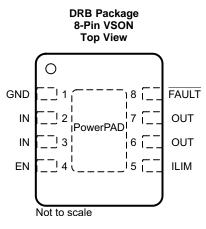
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

#### Changes from Revision A (Feburary 2012) to Revision B

#### Page

| • | Added Device Information table, Device Comparison Table, Pin Configuration and Functions section, Specifications section, ESD Ratings table, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section. | 1 |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| • | Deleted Ordering Information table; see Package Option Addendum at the end of the data sheet                                                                                                                                                                                                                                                       | 1 |
| • | Added Thermal Information table                                                                                                                                                                                                                                                                                                                    | 5 |
| • | Changed R <sub>0JC(top)</sub> value in <i>Thermal Information</i> table From: 10.7°C/W To: 54.5°C/W                                                                                                                                                                                                                                                | 5 |
| • | Changed Figure 11 title From: Current Limit Threshold Vs R <sub>ILM</sub> To: Switch Current vs Drain-Source Voltage Across Switch                                                                                                                                                                                                                 | 7 |
| • | Changed Figure 12 title From: Current Limit Threshold Vs R <sub>ILM</sub> To: Switch Current vs Drain-Source Voltage Across Switch                                                                                                                                                                                                                 | 7 |

#### Changes from Original (November 2009) to Revision A


#### Page

| • | Changed V <sub>EN</sub> to V <sub>EN</sub> in <i>Recommended Operating Conditions</i> table | 4 |
|---|---------------------------------------------------------------------------------------------|---|
| • | Changed V <sub>EN</sub> to V <sub>EN</sub> in <i>Recommended Operating Conditions</i> table | 4 |

## 5 Device Comparison Table

| 33 m $\Omega$ , SINGLE | 80 mΩ, SINGLE   | 80 mΩ, DUAL     | 80 mΩ, DUAL    | 80 mΩ, TRIPLE   | 80 mΩ, QUAD     | 80 mΩ, QUAD    |
|------------------------|-----------------|-----------------|----------------|-----------------|-----------------|----------------|
|                        |                 |                 |                |                 |                 |                |
| TPS201xA 0.2 A-2 A     | TPS2014 600 mA  |                 |                |                 |                 |                |
| TPS202x 0.2 A-2 A      | TPS2015 1 A     | TPS2042B 500 mA | TPS2080 500 mA |                 |                 |                |
| TPS203x 0.2 A-2 A      | TPS2041B 500 mA | TPS2052B 500 mA | TPS2081 500 mA | TPS2043B 500 mA | ]               |                |
|                        | TPS2051B 500 mA | TPS2046B 250 mA | TPS2082 500 mA | TPS2053B 500 mA | TPS2044B 500 mA | TPS2085 500 mA |
|                        | TPS2045A 250 mA | TPS2056 250 mA  | TPS2090 250 mA | TPS2047B 250 mA | TPS2054B 500 mA | TPS2086 500 mA |
|                        | TPS2049 100 mA  | TPS2062 1 A     | TPS2091 250 mA | TPS2057A 250 mA | TPS2048A 250 mA | TPS2087 500 mA |
|                        | TPS2055A 250 mA | TPS2066 1 A     | TPS2092 250 mA | TPS2063 1 A     | TPS2058 250 mA  | TPS2095 250 mA |
|                        | TPS2061 1 A     | TPS2060 1.5 A   |                | TPS2067 1 A     |                 | TPS2096 250 mA |
|                        | TPS2065 1 A     | TPS2064 1.5 A   |                |                 |                 | TPS2097 250 mA |
|                        | TPS2068 1.5 A   |                 |                |                 |                 |                |
|                        | TPS2069 1.5 A   |                 |                |                 |                 |                |

## 6 Pin Configuration and Functions



TPS2556:  $\overline{\text{EN}}$  pin is active low. TPS2557: EN pin is active high.

#### **Pin Functions**

| PIN       |          | I/O      | DESCRIPTION |                                                                                                                               |  |  |
|-----------|----------|----------|-------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|
| NAME      | TPS2556  | TPS2557  | 1/0         | DESCRIPTION                                                                                                                   |  |  |
| EN        | 4        | _        | Ι           | Enable input: Logic low turns on power switch. Applicable to the TPS2556.                                                     |  |  |
| EN        | _        | 4        | Ι           | Enable input: Logic high turns on power switch. Applicable to the TPS2557.                                                    |  |  |
| FAULT     | 8        | 8        | 0           | Active-low open-drain output: Asserted during overcurrent or overtemperature conditions.                                      |  |  |
| GND       | 1        | 1        |             | Ground connection: Connect externally to PowerPAD.                                                                            |  |  |
| ILIM      | 5        | 5        | 0           | External resistor used to set current-limit threshold. TI recommends 20 k $\Omega \le R_{ILIM} \le 187 \text{ k}\Omega$ .     |  |  |
| IN        | 2, 3     | 2, 3     | Ι           | Input voltage: Connect a $0.1\mbox{-}\mu\mbox{F}$ or greater ceramic capacitor from IN to GND as close to the IC as possible. |  |  |
| OUT       | 6, 7     | 6, 7     | 0           | Power-switch output.                                                                                                          |  |  |
| PowerPAD™ | PowerPAD | PowerPAD | _           | Internally connected to GND. Used to heat-sink the part to the circuit board traces. Connect PowerPAD to GND pin externally.  |  |  |

Copyright © 2009–2016, Texas Instruments Incorporated

## 7 Specifications

## 7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)<sup>(1)(2)</sup>

|                                       |                                                                    | MIN        | MAX            | UNIT |
|---------------------------------------|--------------------------------------------------------------------|------------|----------------|------|
| Voltage                               | IN, OUT, EN or $\overline{EN}$ , ILIM, and $\overline{FAULT}$ pins | -0.3       | 7              | V    |
| Voltage from IN to OUT                |                                                                    | -7         | 7              | V    |
| Continuous output current             |                                                                    | Internal   | ly limited     |      |
| Continuous FAULT sink current         |                                                                    |            | 25             | mA   |
| ILIM source current                   |                                                                    | Internal   | ly limited     |      |
| Continuous total power dissipation    |                                                                    | See Therma | al Information |      |
| Maximum junction temperature          |                                                                    | -40        | OTSD2          | °C   |
| Storage temperature, T <sub>stg</sub> |                                                                    | -65        | 150            | °C   |

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Voltages are referenced to GND unless otherwise noted.

## 7.2 ESD Ratings

|                    |                         |                                                                                | VALUE  | UNIT |
|--------------------|-------------------------|--------------------------------------------------------------------------------|--------|------|
|                    |                         | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 <sup>(1)</sup>              | ±2000  |      |
| V                  | Electrostatic discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101 <sup>(2)</sup> | ±500   | N/   |
| V <sub>(ESD)</sub> |                         | IEC 61000-4-2 contact discharge <sup>(3)</sup>                                 | ±8000  | V    |
|                    |                         | IEC 61000-4-2 air discharge <sup>(3)</sup>                                     | ±15000 |      |

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

(3) Surges per EN61000-4-2, 1999 applied between USB and output ground of the TPS2556EVM (HPA423) evaluation module (see *Using the TPS2556EVM-423 and TPS2557EVM-423*). These were the test levels, not the failure threshold.

### 7.3 Recommended Operating Conditions

|                   |                                        |         | MIN | MAX  | UNIT |
|-------------------|----------------------------------------|---------|-----|------|------|
| V <sub>IN</sub>   | Input voltage, IN                      |         | 2.5 | 6.5  | V    |
| VEN               | Enchle veltere                         | TPS2556 | 0   | 6.5  | V    |
| $V_{EN}$          | Enable voltage                         | TPS2557 | 0   | 6.5  | V    |
| VIH               | High-level input voltage on Enable pin |         | 1.1 |      | V    |
| VIL               | Low-level input voltage on Enable pin  |         |     | 0.66 | v    |
| I <sub>OUT</sub>  | Continuous output current (OUT pin)    |         | 0   | 5    | А    |
|                   | Continuous FAULT sink current          |         | 0   | 10   | mA   |
| R <sub>ILIM</sub> | Recommended resistor limit             |         | 20  | 187  | kΩ   |
| TJ                | Operating virtual junction temperature |         | -40 | 125  | °C   |



### 7.4 Thermal Information

|                      |                                              | TPS255x    |      |
|----------------------|----------------------------------------------|------------|------|
|                      | THERMAL METRIC <sup>(1)</sup>                | DRB (VSON) | UNIT |
|                      |                                              | 8 PINS     |      |
| $R_{\theta J A}$     | Junction-to-ambient thermal resistance       | 41.5       | °C/W |
| $R_{\theta JC(top)}$ | Junction-to-case (top) thermal resistance    | 54.5       | °C/W |
| $R_{\theta JB}$      | Junction-to-board thermal resistance         | 16.4       | °C/W |
| ΨJT                  | Junction-to-top characterization parameter   | 0.7        | °C/W |
| ΨJB                  | Junction-to-board characterization parameter | 16.6       | °C/W |
| $R_{\theta JC(bot)}$ | Junction-to-case (bottom) thermal resistance | 3.6        | °C/W |

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

## 7.5 Electrical Characteristics

over recommended operating conditions,  $V_{EN} = 0$  V or  $V_{EN} = V_{IN}$  (unless otherwise noted)<sup>(1)</sup>

|                                            | PARAMETER                                              | TEST CONDIT                                                                                         | IONS                             | MIN  | TYP  | MAX  | UNIT |
|--------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------|------|------|------|------|
| POWER S                                    | SWITCH                                                 |                                                                                                     |                                  |      |      |      |      |
| -                                          | Statia drain aguras on stata registance                | $T_J = 25^{\circ}C$                                                                                 |                                  |      | 22   | 25   |      |
| r <sub>DS(ON)</sub>                        | Static drain-source on-state resistance                | –40°C ≤T <sub>J</sub> ≤ 125°C                                                                       |                                  |      |      | 35   | mΩ   |
|                                            | Enable pin turn on and off threshold                   |                                                                                                     |                                  | 0.66 |      | 1.1  | V    |
|                                            | Enable input hysteresis <sup>(2)</sup>                 |                                                                                                     |                                  |      | 55   |      | mV   |
| I <sub>EN</sub>                            | Input current                                          | $V_{EN} = 0 \text{ V or } 6.5 \text{ V}, \text{ V}_{\overline{EN}} = 0 \text{ V or } 6.5 \text{ V}$ | 5 V                              | -0.5 |      | 0.5  | μA   |
| Current-limit threshold (Maximum DC output |                                                        | R <sub>ILIM</sub> = 24.9 kΩ                                                                         |                                  | 4130 | 4450 | 4695 |      |
| I <sub>OS</sub>                            | current I <sub>OUT</sub> delivered to load) and short- | R <sub>ILIM</sub> = 61.9 kΩ                                                                         |                                  | 1590 | 1785 | 1960 | mA   |
|                                            | circuit current, OUT connected to GND                  | $R_{ILIM} = 100 \text{ k}\Omega$                                                                    |                                  | 935  | 1100 | 1260 |      |
| I <sub>IN_OFF</sub>                        | Supply current, low-level output                       | $V_{IN}$ = 6.5 V, No load on OUT, $V_{\overline{EN}}$ =                                             | = 6.5 V or V <sub>EN</sub> = 0 V |      | 0.1  | 2    | μA   |
|                                            | Supply current, high-level output                      | $V_{IN}$ = 6.5 V, No load on OUT                                                                    | R <sub>ILIM</sub> = 24.9 kΩ      |      | 95   | 120  | μA   |
| I <sub>IN_ON</sub>                         |                                                        |                                                                                                     | $R_{ILIM} = 100 \text{ k}\Omega$ |      | 85   | 110  | μA   |
| I <sub>REV</sub>                           | Reverse leakage current                                | V <sub>OUT</sub> = 6.5 V, V <sub>IN</sub> = 0 V, T <sub>J</sub> = 25 °C                             |                                  |      | 0.01 | 1    | μA   |
| UVLO                                       | Low-level input voltage (IN pin)                       | V <sub>IN</sub> rising                                                                              |                                  |      | 2.35 | 2.45 | V    |
|                                            | UVLO hysteresis (IN pin) <sup>(2)</sup>                |                                                                                                     |                                  |      | 35   |      | mV   |
| FAULT F                                    | LAG                                                    | 1                                                                                                   |                                  | - U  |      |      |      |
| V <sub>OL</sub>                            | Output low voltage (FAULT pin)                         | I <sub>FAULT</sub> = 1 mA                                                                           |                                  |      |      | 180  | mV   |
|                                            | Off-state leakage                                      | V <sub>FAULT</sub> = 6.5 V                                                                          |                                  |      |      | 1    | μA   |
|                                            | FAULT deglitch                                         | FAULT assertion or deassertion du<br>condition                                                      | e to overcurrent                 | 6    | 9    | 13   | ms   |
| THERMA                                     | L SHUTDOWN                                             |                                                                                                     |                                  |      |      |      |      |
| OTSD2                                      | Thermal shutdown threshold                             |                                                                                                     |                                  | 155  |      |      | °C   |
| OTSD                                       | Thermal shutdown threshold in current-limit            |                                                                                                     |                                  | 135  |      |      | °C   |
|                                            | Hysteresis <sup>(2)</sup>                              |                                                                                                     |                                  |      | 20   |      | °C   |

Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be considered separately.
 These parameters are provided for reference only, and do no constitute part of TI's published specifications for purposes of TI's product warranty.

SLVS931B-NOVEMBER 2009-REVISED DECEMBER 2016

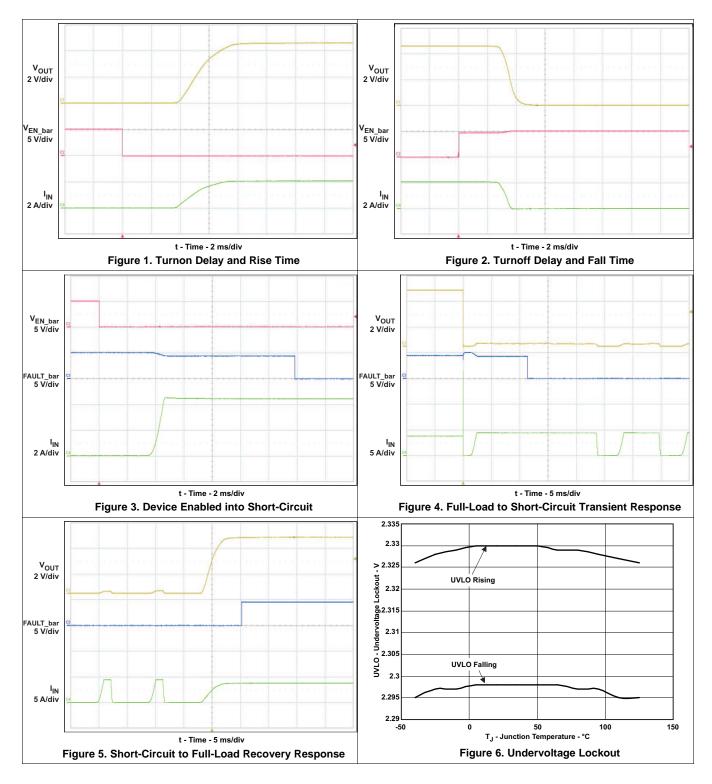
TEXAS INSTRUMENTS

www.ti.com

## 7.6 Switching Characteristics

over operating free-air temperature range (unless otherwise noted)

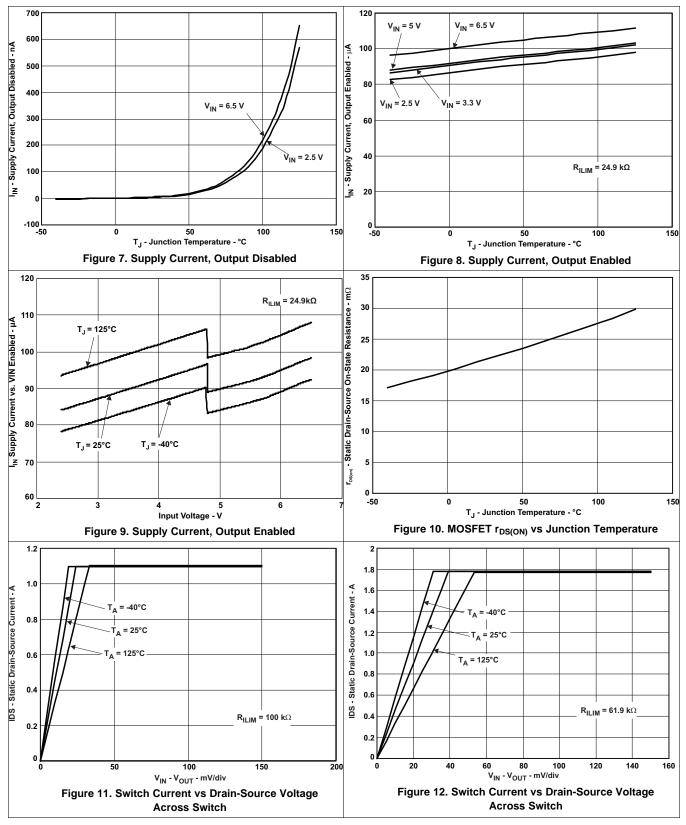
|                                  | PARAMETER                                     | TEST CONDIT                                             | ONS                     | MIN | TYP | MAX | UNIT |
|----------------------------------|-----------------------------------------------|---------------------------------------------------------|-------------------------|-----|-----|-----|------|
|                                  | Diag time a sutment                           | $C_{L} = 1 \ \mu F, R_{L} = 100 \ \Omega$ , (see        | V <sub>IN</sub> = 6.5 V | 2   | 3   | 4   |      |
| t <sub>R</sub> Rise time, output | Figure 15)                                    | V <sub>IN</sub> = 2.5 V                                 | 1                       | 2   | 3   | ms  |      |
|                                  |                                               | $C_L = 1 \ \mu F, R_L = 100 \ \Omega$ , (see Figure 15) | V <sub>IN</sub> = 6.5 V | 0.6 | 0.8 | 1   | ms   |
| t <sub>F</sub>                   | Fall time, output                             |                                                         | V <sub>IN</sub> = 2.5 V | 0.4 | 0.6 | 0.8 |      |
| t <sub>ON</sub>                  | Turnon time                                   | $C_L = 1 \ \mu F$ , $R_L = 100 \ \Omega$ , (see         |                         |     | 9   | ms  |      |
| t <sub>OFF</sub>                 | Turnoff time                                  | $C_L$ = 1 µF, $R_L$ = 100 $\Omega$ , (see               |                         |     | 6   | ms  |      |
| t <sub>IOS</sub>                 | Response time to short circuit <sup>(1)</sup> | V <sub>IN</sub> = 5 V (see Figure 16)                   |                         | 3.5 |     | μs  |      |


(1) These parameters are provided for reference only, and do no constitute part of TI's published specifications for purposes of TI's product warranty.

6 Submit Documentation Feedback

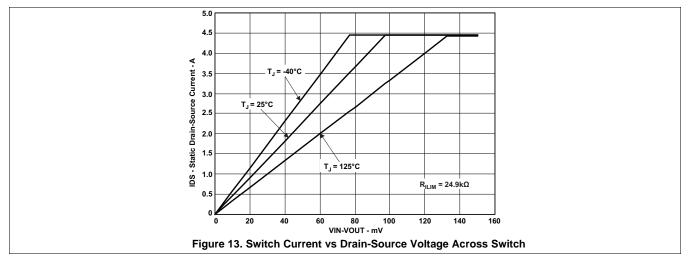
Copyright © 2009–2016, Texas Instruments Incorporated



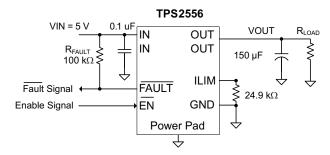

## 7.7 Typical Characteristics



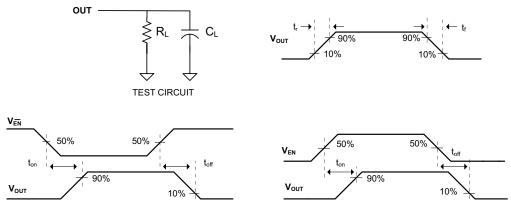
#### TPS2556, TPS2557 SLVS931B – NOVEMBER 2009 – REVISED DECEMBER 2016


www.ti.com

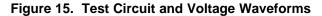
## **Typical Characteristics (continued)**

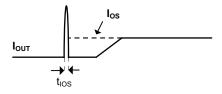


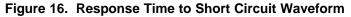




## **Typical Characteristics (continued)**




## 8 Parameter Measurement Information






VOLTAGE WAVEFORMS







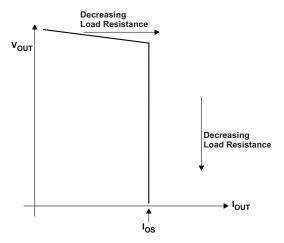
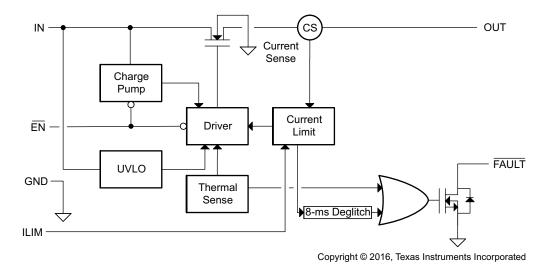



Figure 17. Output Voltage vs Current-Limit Threshold




## 9 Detailed Description

## 9.1 Overview

The TPS2556 and TPS2557 are current-limited, power-distribution switches using N-channel MOSFETs for applications where short circuits or heavy capacitive loads are encountered. These devices allow the user to program the current-limit threshold from 500 mA to 5 A (typical) through an external resistor. These devices incorporate an internal charge pump and the gate drive circuitry necessary to drive the N-channel MOSFET. The charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.5 V and requires little supply current. The driver controls the gate voltage of the power switch. The driver incorporates circuitry that controls the rise and fall times of the output voltage to limit large current and voltage surges and provides built-in soft-start functionality. The TPS255x family limits the output current to the programmed current-limit threshold ( $I_{OS}$ ) during an overcurrent or short-circuit event by reducing the charge pump voltage driving the N-channel MOSFET and operating it in the linear range of operation. The result of limiting the output current to  $I_{OS}$  reduces the output voltage at OUT because N-channel MOSFET is no longer fully enhanced.

## 9.2 Functional Block Diagram



### 9.3 Feature Description

#### 9.3.1 Overcurrent Conditions

The TPS255x responds to overcurrent conditions by limiting their output current to  $I_{OS}$ . When an overcurrent condition is detected, the device maintains a constant output current and the output voltage reduces accordingly. Two possible overload conditions can occur.

The first condition is when a short circuit or partial short circuit is present when the device is powered up or enabled. The output voltage is held near zero potential with respect to ground and the TPS255x ramps the output current to  $I_{OS}$ . The TPS255x limits the current to  $I_{OS}$  until the overload condition is removed or the device begins to thermal cycle.

The second condition is when a short circuit, partial short circuit, or transient overload occurs while the device is enabled and powered on. The device responds to the overcurrent condition within time  $t_{IOS}$  (see Figure 16). The current-sense amplifier is overdriven during this time and momentarily disables the internal N-channel MOSFET. The current-sense amplifier recovers and ramps the output current to  $I_{OS}$ . Similar to the previous case, the TPS255x limits the current to  $I_{OS}$  until the overload condition is removed or the device begins to thermal cycle.

The TPS255s thermal cycles if an overload condition is present long enough to activate thermal limiting in any of the above cases. The device turns off when the junction temperature exceeds 135°C (minimum) while in current limit. The device remains off until the junction temperature cools 20°C (typical) and then restarts. The TPS255x cycles on and off until the overload is removed (see Figure 5).

Copyright © 2009–2016, Texas Instruments Incorporated



### Feature Description (continued)

## 9.3.2 FAULT Response

The FAULT open-drain output is asserted (active low) during an overcurrent or overtemperature condition. The TPS255s asserts the FAULT signal until the fault condition is removed and the device resumes normal operation. The TPS255s is designed to eliminate false FAULT reporting by using an internal delay *deglitch* circuit for overcurrent (9-ms typical) conditions without the need for external circuitry. This ensures that FAULT is not accidentally asserted due to normal operation such as starting into a heavy capacitive load. The deglitch circuitry delays entering and leaving current-limit induced fault conditions. The FAULT signal is not deglitched when the MOSFET is disabled due to an overtemperature condition but is deglitched after the device has cooled and begins to turn on. This unidirectional deglitch prevents FAULT oscillation during an overtemperature event.

#### 9.3.3 Undervoltage Lockout (UVLO)

The undervoltage lockout (UVLO) circuit disables the power switch until the input voltage reaches the UVLO turnon threshold. Built-in hysteresis prevents unwanted on and off cycling due to input voltage droop during turnon.

#### 9.3.4 Enable (EN OR EN)

The logic enable controls the power <u>switch</u> and device supply current. The supply current is reduced to less than  $2-\mu A$  when a logic high is present on EN or when a logic low is present on EN. A logic low input on EN or a logic high input on EN enables the driver, control circuits, and power switch. The enable input is compatible with both TTL and CMOS logic levels.

#### 9.3.5 Thermal Sense

The TPS255x self-protects by using two independent thermal sensing circuits that monitor the operating temperature of the power switch and disable operation if the temperature exceeds recommended operating conditions. The TPS255x operates in constant-current mode during an overcurrent conditions, which increases the voltage drop across power switch. The power dissipation in the package is proportional to the voltage drop across the power switch, which increases the junction temperature during an overcurrent condition. The first thermal sensor (OTSD) turns off the power switch when the die temperature exceeds 135°C (minimum) and the part is in current limit. Hysteresis is built into the thermal sensor, and the switch turns on after the device has cooled approximately 20°C.

The TPS255x also has a second ambient thermal sensor (OTSD2). The ambient thermal sensor turns off the power switch when the die temperature exceeds 155°C (minimum) regardless of whether the power switch is in current limit and turns on the power switch after the device has cooled approximately 20°C. The TPS255x continues to cycle off and on until the fault is removed.

### 9.4 Device Functional Modes

There are no other functional modes.



## **10** Application and Implementation

#### NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

### **10.1** Application Information

The TPS2556 and TPS2557 are precision power-distribution switches for applications where heavy capacitive loads and short circuits are expected to be encountered. The following design procedures can be used to choose the input and output capacitors as well as to calculate the current limit programming resistor value for a typical design. Additional application examples are provided including an auto-retry circuit and a two-level current limit circuit.

#### **10.2 Typical Applications**

#### 10.2.1 Current-Limiting Power-Distribution Switch

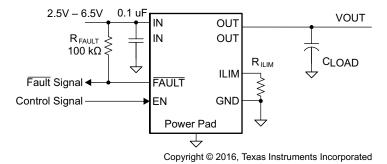



Figure 18. Typical Current-Limiting Application

#### 10.2.1.1 Design Requirements

For this example, use the parameters listed in Table 1 as the input parameters.

**Table 1. Design Parameters** 

| PARAMETER                     | VALUE   |  |  |  |
|-------------------------------|---------|--|--|--|
| Input voltage                 | 5 V     |  |  |  |
| Output voltage                | 5 V     |  |  |  |
| Above a minimum current limit | 3000 mA |  |  |  |
| Below a maximum current limit | 5000 mA |  |  |  |

#### 10.2.1.2 Detailed Design Procedure

#### 10.2.1.2.1 Input and Output Capacitance

Input and output capacitance improves the performance of the device; the actual capacitance must be optimized for the particular application. TI recommends a 0.1-µF or greater ceramic bypass capacitor between IN and GND as close to the device as possible for local noise decoupling for all applications. This precaution reduces ringing on the input due to power-supply transients. Additional input capacitance may be needed on the input to reduce voltage overshoot from exceeding the absolute-maximum voltage of the device during heavy transient conditions. This is especially important during bench testing when long, inductive cables are used to connect the evaluation board to the bench power supply.

Output capacitance is not required, but TI recommends placing a high-value electrolytic capacitor on the output pin when large transient currents are expected on the output.

Copyright © 2009–2016, Texas Instruments Incorporated

#### TPS2556, TPS2557

SLVS931B-NOVEMBER 2009-REVISED DECEMBER 2016



www.ti.com

(1)

#### 10.2.1.2.2 Programming the Current-Limit Threshold

The overcurrent threshold is user programmable through an external resistor. The TPS255x uses an internal regulation loop to provide a regulated voltage on the ILIM pin. The current-limit threshold is proportional to the current sourced out of ILIM. The recommended 1% resistor for  $R_{ILIM}$  is 20 k $\Omega \leq R_{ILIM} \leq 187$  k $\Omega$  to ensure stability of the internal regulation loop. Many applications require that the minimum current limit is above a certain current level or that the maximum current limit is below a certain current level, so it is important to consider the tolerance of the overcurrent threshold when selecting a value for  $R_{ILIM}$ . Equation 1 approximates the resulting overcurrent threshold for a given external resistor value ( $R_{ILIM}$ ). See *Electrical Characteristics* for specific current limit settings. The traces routing the  $R_{ILIM}$  resistor to the TPS255x must be as short as possible to reduce parasitic effects on the current-limit accuracy.

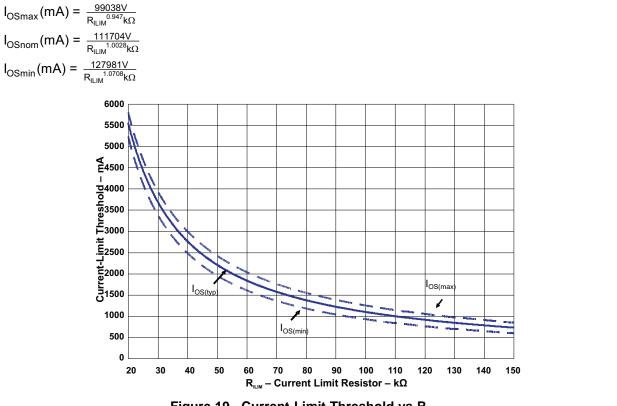



Figure 19. Current-Limit Threshold vs R<sub>ILIM</sub>



### 10.2.1.2.2.1 Designing Above a Minimum Current Limit

Some applications require that current limiting cannot occur below a certain threshold. For this example, assume that 3 A must be delivered to the load so that the minimum desired current-limit threshold is 3000 mA. Use the  $I_{OS}$  equations and Figure 19 to select  $R_{ILIM}$ .

$$I_{OSmin}(mA) = 3000mA$$

$$I_{OSmin}(mA) = \frac{127981V}{R_{ILIM}^{1.0708}k\Omega}$$

$$R_{ILIM}(k\Omega) = \left(\frac{127981V}{I_{OSmin}mA}\right)^{\frac{1}{1.0708}}$$

$$R_{ILIM}(k\Omega) = 33.3k\Omega$$

(2)

(3)

**TPS2556, TPS2557** 

SLVS931B-NOVEMBER 2009-REVISED DECEMBER 2016

Select the closest 1% resistor less than the calculated value:  $R_{ILIM} = 33.2 \text{ k}\Omega$ . This sets the minimum current-limit threshold at 3000 mA . Use the I<sub>OS</sub> equations, Figure 19, and the previously calculated value for  $R_{ILIM}$  to calculate the maximum resulting current-limit threshold.

$$R_{ILIM}(k\Omega) = 33.2k\Omega$$

$$I_{OSmax}(mA) = \frac{99038V}{R_{ILIM}^{0.947}k\Omega}$$

$$I_{OSmax}(mA) = \frac{99038V}{33.2^{0.947}k\Omega}$$

$$I_{OSmax}(mA) = 3592mA$$

The resulting maximum current-limit threshold is 3592 mA with a 33.2-k $\Omega$  resistor.

#### 10.2.1.2.2.2 Designing Below a Maximum Current Limit

Some applications require that current limiting must occur below a certain threshold. For this example, assume that the desired upper current-limit threshold must be below 5000 mA to protect an upstream power supply. Use the  $I_{OS}$  equations and Figure 19 to select  $R_{ILIM}$ .

$$I_{OSmax}(mA) = 5000mA$$

$$I_{OSmax}(mA) = \frac{99038V}{R_{ILIM}^{0.947}k\Omega}$$

$$R_{ILIM}(k\Omega) = \left(\frac{99038V}{I_{OSmax}mA}\right)^{\frac{1}{0.947}}$$

$$R_{ILIM}(k\Omega) = 23.4k\Omega$$

Select the closest 1% resistor greater than the calculated value:  $R_{ILIM} = 23.7 \text{ k}\Omega$ . This sets the maximum currentlimit threshold at 5000 mA. Use the I<sub>OS</sub> equations, Figure 19, and the previously calculated value for  $R_{ILIM}$  to calculate the minimum resulting current-limit threshold.

$$R_{ILIM}(K\Omega) = 23.7 K\Omega$$

$$I_{OSmin}(mA) = \frac{127981V}{R_{ILIM}^{1.0708} k\Omega}$$

$$I_{OSmin}(mA) = \frac{127981V}{23.7^{1.0708} k\Omega}$$

$$I_{OSmin}(mA) = 4316mA$$

The resulting minimum current-limit threshold is 4316 mA with a 23.7-k $\Omega$  resistor.

(5)

(4)



SLVS931B-NOVEMBER 2009-REVISED DECEMBER 2016

#### 10.2.1.2.2.3 Accounting for Resistor Tolerance

The analysis of resistor selection focused only on the TPS255x performance and assumed an exact resistor value. However, resistors sold in quantity are not exact and are bounded by an upper and lower tolerance centered around a nominal resistance. The additional  $R_{\rm ILIM}$  resistance tolerance directly affects the current-limit threshold accuracy at a system level. Table 2 shows a process that accounts for worst-case resistor tolerance assuming 1% resistor values. Using the selection process outlined, determine the upper and lower resistance bounds of the selected resistor. Then calculate the upper and lower resistor bounds to determine the threshold limits. It is important to use tighter tolerance resistors (0.5% or 0.1%) when precision current limiting is desired.

| DESIRED NOMINAL    | IDEAL RESISTOR | CLOSEST 1%             | RESISTOR | BOUNDS (kΩ) | I <sub>OS</sub> ACTUAL LIMITS (mA) |      |      |  |
|--------------------|----------------|------------------------|----------|-------------|------------------------------------|------|------|--|
| CURRENT LIMIT (mA) | (kΩ)           | RESISTOR ( $k\Omega$ ) | 1% LOW   | 1% HIGH     | MIN                                | NOM  | MAX  |  |
| 750                | 146.9          | 147                    | 145.5    | 148.5       | 605                                | 749  | 886  |  |
| 1000               | 110.2          | 110                    | 108.9    | 111.1       | 825                                | 1002 | 1166 |  |
| 1250               | 88.2           | 88.7                   | 87.8     | 89.6        | 1039                               | 1244 | 1430 |  |
| 1500               | 73.6           | 73.2                   | 72.5     | 73.9        | 1276                               | 1508 | 1715 |  |
| 1750               | 63.1           | 63.4                   | 62.8     | 64          | 1489                               | 1742 | 1965 |  |
| 2000               | 55.2           | 54.9                   | 54.4     | 55.4        | 1737                               | 2012 | 2252 |  |
| 2250               | 49.1           | 48.7                   | 48.2     | 49.2        | 1975                               | 2269 | 2523 |  |
| 2500               | 44.2           | 44.2                   | 43.8     | 44.6        | 2191                               | 2501 | 2765 |  |
| 2750               | 40.2           | 40.2                   | 39.8     | 40.6        | 2425                               | 2750 | 3025 |  |
| 3000               | 36.9           | 36.5                   | 36.1     | 36.9        | 2689                               | 3030 | 3315 |  |
| 3250               | 34             | 34                     | 33.7     | 34.3        | 2901                               | 3253 | 3545 |  |
| 3500               | 31.6           | 31.6                   | 31.3     | 31.9        | 3138                               | 3501 | 3800 |  |
| 3750               | 29.5           | 29.4                   | 29.1     | 29.7        | 3390                               | 3764 | 4068 |  |
| 4000               | 27.7           | 27.4                   | 27.1     | 27.7        | 3656                               | 4039 | 4349 |  |
| 4250               | 26             | 26.1                   | 25.8     | 26.4        | 3851                               | 4241 | 4554 |  |
| 4500               | 24.6           | 24.9                   | 24.7     | 25.1        | 4050                               | 4446 | 4761 |  |
| 4750               | 23.3           | 23.2                   | 23       | 23.4        | 4369                               | 4773 | 5091 |  |
| 5000               | 22.1           | 22.1                   | 21.9     | 22.3        | 4602                               | 5011 | 5331 |  |
| 5250               | 21.1           | 21                     | 20.8     | 21.2        | 4861                               | 5274 | 5595 |  |
| 5500               | 20.1           | 20                     | 19.8     | 20.2        | 5121                               | 5539 | 5859 |  |

#### Table 2. Common R<sub>ILIM</sub> Resistor Selections

#### 10.2.1.2.3 Auto-Retry Functionality

Some applications require that an overcurrent condition disables the part momentarily during a fault condition and re-enables after a pre-set time. This *auto-retry* functionality can be implemented with an external resistor and capacitor. During a fault condition, FAULTpulls EN low. The part is disabled when EN is pulled below the turn-off theshold, and FAULT goes high impedance allowing  $C_{RETRY}$  to begin charging. The part re-enables when the voltage on EN reaches the turn-on threshold. The auto-retry time is determined by the resistor and capacitor time constant. The part continues to cycle in this manner until the fault condition is removed. The time between retries is given in Equation 6.

 $T_{BR} = -R_{FAULT} \times C_{RETRY} \times LN (1 - V_{EN} / (V_{IN} - V_{OL})) + T_{FAULT}$ 

where

- V<sub>EN</sub> is the EN pin typical threshold voltage
- V<sub>IN</sub> is the input voltage
- V<sub>OL</sub> is the FAULT pin typical saturation voltage
- T<sub>FAULT</sub> is the internal FAULT typical deglitch time

The retry duty cycle is calculated with Equation 7, and the average current is  $D \times I_{OS}$ .

 $D = T_{FAULT} / (T_{FAULT} + T_{BR})$ 

(6) (7)



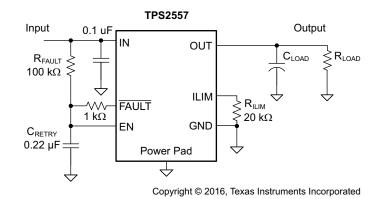



Figure 20. Auto-Retry Functionality

Some applications require auto-retry functionality and the ability to enable and disable with an external logic signal. The figure below shows how an external logic signal can drive EN through R<sub>FAULT</sub> and maintain auto-retry functionality. The resistor and capacitor time constant determines the auto-retry time-out period.

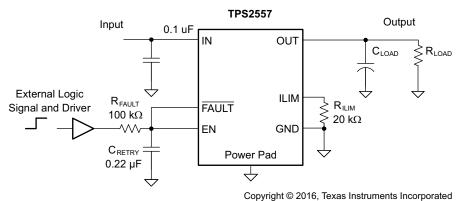



Figure 21. Auto-Retry Functionality With External EN Signal

TEXAS INSTRUMENTS

www.ti.com

#### 10.2.1.2.4 Two-Level Current-Limit Circuit

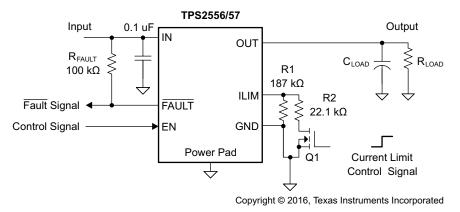
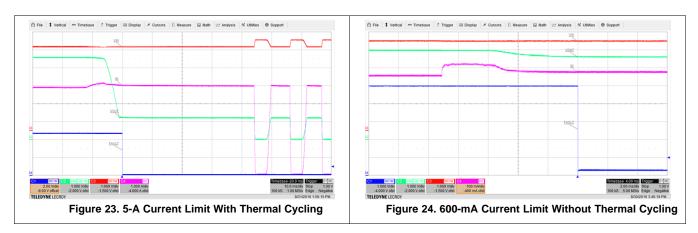



Figure 22. Two-Level Current-Limit Circuit


Some applications require different current-limit thresholds depending on external system conditions. Figure 22 shows an implementation for an externally-controlled, two-level current-limit circuit. The current-limit threshold is set by the total resistance from ILIM to GND (see *Programming the Current-Limit Threshold*). A logic-level input enables and disables MOSFET Q1 and changes the current-limit threshold by modifying the total resistance from ILIM to GND. Additional MOSFET and resistor combinations can be used in parallel to Q1 and R2 to increase the number of additional current-limit levels.

**NOTE** ILIM must never be driven directly with an external signal.

#### 10.2.1.3 Application Curve

In Figure 23, the load current setpoint is 5.05 A, as programmed by the 22.1-k $\Omega$  resistor. Load current is stepped mildly from approximately 4.9 A to 5.2 A. The internal FAULT timer runs and after 9 ms, FAULT goes low and current continues to be regulated at approximately 5 A. Due to the high power dissipation within the device, thermal cycling occurs.

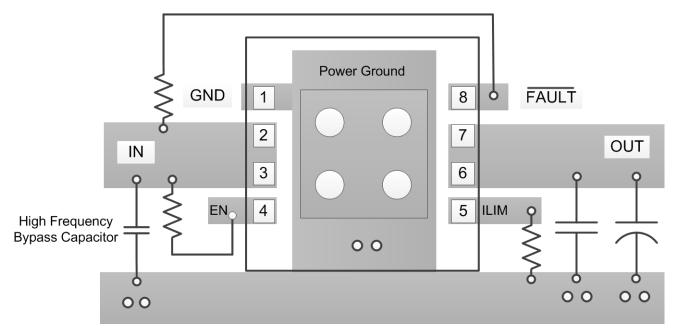
In Figure 24, the load current setpoint is 597 mA, as programmed by the 187-k $\Omega$  resistor. Load current is stepped mildly from approximately 560 mA to 620 mA. The internal FAULT timer runs and after 9 ms, FAULT goes low and current continues to be regulated at approximately 580 mA.



## **11** Power Supply Recommendations

The TPS255x operates from 2.5 V to 6.5 V. TI recommends operating from either a 3.3-V  $\pm$  10% or 5-V  $\pm$  10% power supply. The load capacity of the power supply must be greater than the maximum current limit (I<sub>OS</sub>) setting of the TPS255x.




## 12 Layout

www.ti.com

## 12.1 Layout Guidelines

- TI recommends placing the 100-nF bypass capacitor near the IN and GND pins, and make the connections using a low-inductance trace.
- TI recommends placing a high-value electrolytic capacitor and a 100-nF bypass capacitor on the output pin when large transient currents are expected on the output.
- The traces routing the R<sub>ILIM</sub> resistor to the device must be as short as possible to reduce parasitic effects on the current limit accuracy.
- The PowerPAD must be directly connected to PCB ground plane using wide and short copper trace.

## 12.2 Layout Example



Via to Power Ground Plane

Figure 25. TPS255x Layout Example

# TPS2556, TPS2557

SLVS931B-NOVEMBER 2009-REVISED DECEMBER 2016

## 12.3 Thermal Considerations

The low on-resistance of the N-channel MOSFET allows small surface-mount packages to pass large currents. It is good design practice to estimate power dissipation and junction temperature. This analysis gives an approximation for calculating junction temperature based on the power dissipation in the package. However, thermal analysis is strongly dependent on additional system level factors. Such factors include air flow, board layout, copper thickness and surface area, and proximity to other devices dissipating power. Good thermal design practice must include all system level factors in addition to individual component analysis.

Begin by determining the  $r_{DS(ON)}$  of the N-channel MOSFET relative to the input voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read  $r_{DS(ON)}$  from the typical characteristics graph. Using this value, the power dissipation can be calculated by Equation 8.

 $\mathsf{P}_{\mathsf{D}} = \mathsf{r}_{\mathsf{DS}(\mathsf{ON})} \times \mathsf{I}_{\mathsf{OUT}}^2$ 

where

- P<sub>D</sub> = Total power dissipation (W)
- $r_{DS(ON)}$  = Power switch on-resistance ( $\Omega$ )
- I<sub>OUT</sub> = Maximum current-limit threshold (A)

Finally, calculate the junction temperature with Equation 9.

 $T_{J} = P_{D} \times R_{\theta JA} + T_{A}$ 

where

- T<sub>A</sub> = Ambient temperature (°C)
- $R_{\theta JA}$  = Thermal resistance (°C/W)
- P<sub>D</sub> = Total power dissipation (W)

Compare the calculated junction temperature with the initial estimate. If they are not within a few degrees, repeat the calculation using the *refined*  $r_{DS(ON)}$  from the previous calculation as the new estimate. Two or three iterations are generally sufficient to achieve the desired result. The final junction temperature is highly dependent on thermal resistance, and thermal resistance is highly dependent on the individual package and board layout.

(8)

(9)



## **13 Device and Documentation Support**

#### 13.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

| PARTS   | PRODUCT FOLDER | SAMPLE & BUY | TECHNICAL<br>DOCUMENTS | TOOLS &<br>SOFTWARE | SUPPORT &<br>COMMUNITY |
|---------|----------------|--------------|------------------------|---------------------|------------------------|
| TPS2556 | Click here     | Click here   | Click here             | Click here          | Click here             |
| TPS2557 | Click here     | Click here   | Click here             | Click here          | Click here             |

#### Table 3. Related Links

#### 13.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

#### **13.3 Community Resources**

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E<sup>™</sup> Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

**Design Support TI's Design Support** Quickly find helpful E2E forums along with design support tools and contact information for technical support.

#### 13.4 Trademarks

PowerPAD, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

#### 13.5 Electrostatic Discharge Caution



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

## 13.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

## 14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.



30-Jan-2016

## PACKAGING INFORMATION

| Orderable Device | Status<br>(1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan<br>(2)            | Lead/Ball Finish<br>(6) | MSL Peak Temp       | Op Temp (°C) | Device Marking<br>(4/5) | Samples |
|------------------|---------------|--------------|--------------------|------|----------------|----------------------------|-------------------------|---------------------|--------------|-------------------------|---------|
| TPS2556DRBR      | ACTIVE        | SON          | DRB                | 8    | 3000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-2-260C-1 YEAR | -40 to 85    | 2556                    | Samples |
| TPS2556DRBT      | ACTIVE        | SON          | DRB                | 8    | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-2-260C-1 YEAR | -40 to 85    | 2556                    | Samples |
| TPS2557DRBR      | ACTIVE        | SON          | DRB                | 8    | 3000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-2-260C-1 YEAR | -40 to 85    | 2557                    | Samples |
| TPS2557DRBT      | ACTIVE        | SON          | DRB                | 8    | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-2-260C-1 YEAR | -40 to 85    | 2557                    | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

<sup>(2)</sup> Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

<sup>(3)</sup> MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

<sup>(4)</sup> There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

<sup>(6)</sup> Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.



30-Jan-2016

**Important Information and Disclaimer:**The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

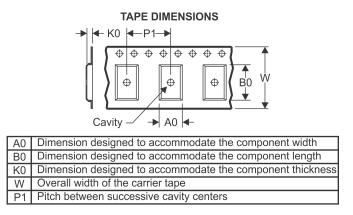
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### OTHER QUALIFIED VERSIONS OF TPS2556, TPS2557 :

• Automotive: TPS2556-Q1, TPS2557-Q1

NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects


# PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

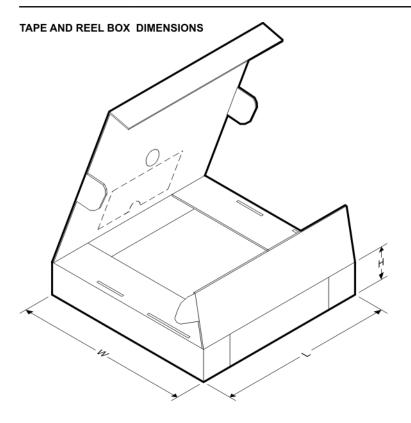
## TAPE AND REEL INFORMATION





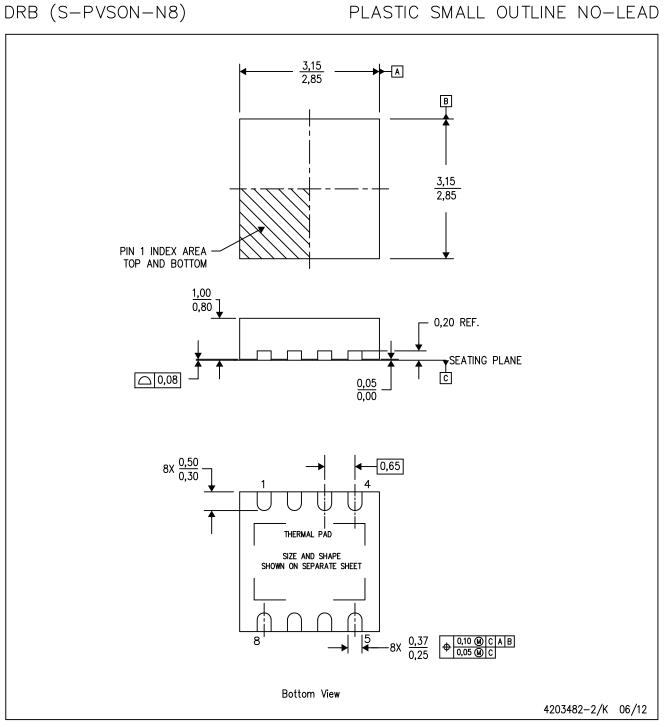
## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE




| *All dimensions are nominal<br>Device | Package<br>Type | Package<br>Drawing | Pins | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|---------------------------------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| TPS2556DRBR                           | SON             | DRB                | 8    | 3000 | 330.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |
| TPS2556DRBT                           | SON             | DRB                | 8    | 250  | 180.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |
| TPS2557DRBR                           | SON             | DRB                | 8    | 3000 | 330.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |
| TPS2557DRBT                           | SON             | DRB                | 8    | 250  | 180.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |

TEXAS INSTRUMENTS

www.ti.com


# PACKAGE MATERIALS INFORMATION

30-Jan-2016



\*All dimensions are nominal

| Device      | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-------------|--------------|-----------------|------|------|-------------|------------|-------------|
| TPS2556DRBR | SON          | DRB             | 8    | 3000 | 367.0       | 367.0      | 35.0        |
| TPS2556DRBT | SON          | DRB             | 8    | 250  | 210.0       | 185.0      | 35.0        |
| TPS2557DRBR | SON          | DRB             | 8    | 3000 | 367.0       | 367.0      | 35.0        |
| TPS2557DRBT | SON          | DRB             | 8    | 250  | 210.0       | 185.0      | 35.0        |



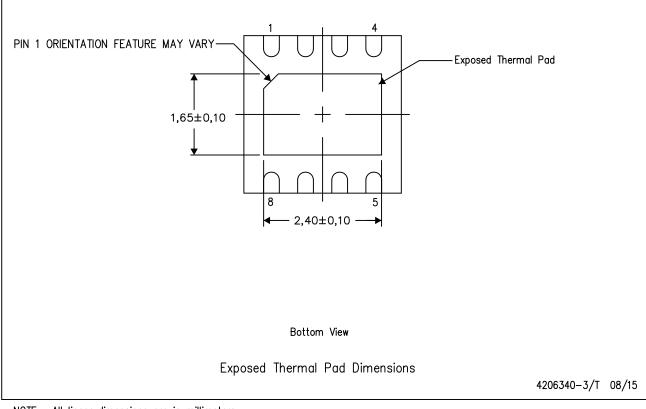
NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Small Outline No-Lead (SON) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.



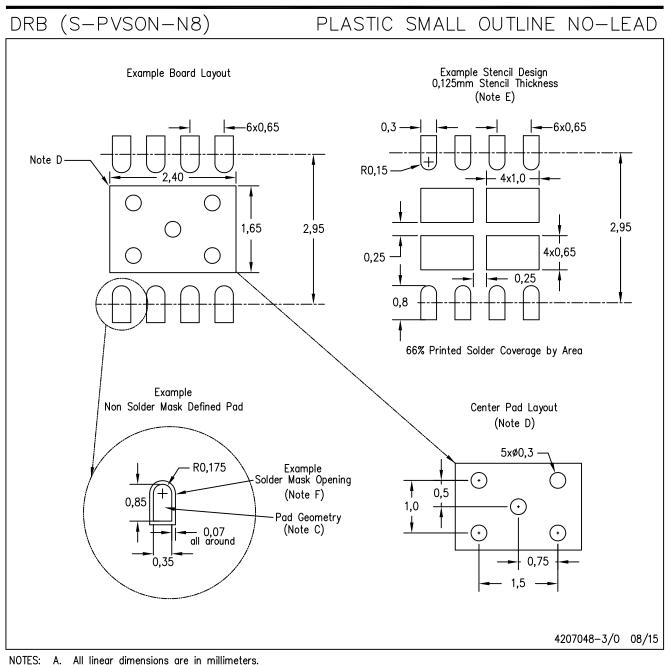
## THERMAL PAD MECHANICAL DATA

## DRB (S-PVSON-N8)


# PLASTIC SMALL OUTLINE NO-LEAD

## THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).


For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.



NOTE: All linear dimensions are in millimeters





- : A. All linear dimensions are in millimeters.
  - B. This drawing is subject to change without notice.C. Publication IPC-7351 is recommended for alternate designs.
  - D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN
  - Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>.
  - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
  - F. Customers should contact their board fabrication site for solder mask tolerances.



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

| Products                     |                          | Applications                  |                                   |
|------------------------------|--------------------------|-------------------------------|-----------------------------------|
| Audio                        | www.ti.com/audio         | Automotive and Transportation | www.ti.com/automotive             |
| Amplifiers                   | amplifier.ti.com         | Communications and Telecom    | www.ti.com/communications         |
| Data Converters              | dataconverter.ti.com     | Computers and Peripherals     | www.ti.com/computers              |
| DLP® Products                | www.dlp.com              | Consumer Electronics          | www.ti.com/consumer-apps          |
| DSP                          | dsp.ti.com               | Energy and Lighting           | www.ti.com/energy                 |
| Clocks and Timers            | www.ti.com/clocks        | Industrial                    | www.ti.com/industrial             |
| Interface                    | interface.ti.com         | Medical                       | www.ti.com/medical                |
| Logic                        | logic.ti.com             | Security                      | www.ti.com/security               |
| Power Mgmt                   | power.ti.com             | Space, Avionics and Defense   | www.ti.com/space-avionics-defense |
| Microcontrollers             | microcontroller.ti.com   | Video and Imaging             | www.ti.com/video                  |
| RFID                         | www.ti-rfid.com          |                               |                                   |
| OMAP Applications Processors | www.ti.com/omap          | TI E2E Community              | e2e.ti.com                        |
| Wireless Connectivity        | www.ti.com/wirelessconne | ctivity                       |                                   |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated