

该产品基于 ToF (Time of Flight) 原理,结合独特的光电设计,实现稳定,精确,高灵敏度,高速的距离检测。

ToF 是 Time of Flight (飞行时间) 技术的缩写,其工作原理如下:即传感器发出经调制的近红外光,遇物体后反射,传感器通过计算光线发射和反射时间差或相位差,来换算被拍摄景物的距离,以产生深度信息。

!!!Warning 防止灰尘或其他异物进入镜头; 否则会影响光线传输。

版本日志

产品版本	说明	发布日期
Grove-TF Mini LiDAR V1.0	首发	2017 年 11 月

规格参数

参数	值
检测距离范围	0.3m-12m
10% 反射率时的最大检测距离范围	5m

参数	值	
平均功耗	0.6W	
适用电压范围	4.5V-6V	
验收角度	2.3°	
最小分辨率	1cm	
频率	100Hz	
准确度	1% (6m 以下), 2% (6m-12m)	
距离检测单位	cm	
波长	850nm	
尺寸	42mm×15mm×16mm	
工作温度	-20°C-60°C	
感光性	70,000lux	
质量	4.7g	
通信接口	UART 115200	
LED 峰值电流	800ma	
串口 TTL 电平	3.3V	
电磁兼容性 (EMC)	EN 55032 Class B	

!!!Tip 关于 Grove 模块的更多信息请点击 Grove System

Platforms Supported

入门指导

与 Arduino 一起使用

硬件连接

• 步骤 1. 准备以下器材:

Seeeduino Lite

Grove-TF Mini LiDAR

Grove-TF Mini LiDAR

Seeeduino Lite

- 步骤 2. 将 Grove-TF Mini LiDAR 连接到 Seeeduino Lite 的串口端口。
- 步骤 3. 通过 USB 线缆将 Seeeduino 连接到 PC。

!!!Note 如果您使用串口监视器来查看数据,请确保您的开发板有两个以上的硬件串口。Grove-TF Mini LiDAR 的 UART 波特率是 115200,但不支持 SoftwareSerial。所以如果我们使用 1 个硬件 UART 来挂接传感器然后其 他硬件 UART 来进行串口显示,那么我们至少需要 2 个硬件串口 UART,比如 Arduino mega, Seeeduino lite等等。如果我们只有一个 UART 平台 (即 Seeeduino v4.2, Arduino uno),我们可以使用 I2C LCD 作为显示器。

软件部分

• 步骤 1. Grove-TF Mini LiDAR 是一个十六进制输出数据模块。每帧数据用 9 个字节编码,包括 1 个距离数据 (Dist)。每个距离数据都有相应的信号强度信息 (Strength)。帧结束是数据奇偶校验位。

字节号	数据编码解释		
Byte1	0x59, 帧头,所有帧都是一样的		
Byte2	0x59, 帧头,所有帧都是一样的		
Byte3	Dist_L 距离值是一个低 8 位		
Byte4	Dist_H 距离值是一个高 8 位		
Byte5	Strength_L 是一个低 8 位的值		
Byte6	Strength_H 是一个高 8 位的值		
Byte7	积分时间		
Byte8	保留字节		
Byte9	校验位		

• 步骤 2. 复制代码至 Arduino IDE 并上传

```
unsigned char dta[100];
unsigned char len = 0;
void setup()
{
    Serial1.begin(115200);
    Serial.begin(115200);
}
void loop()
{
    while(Serial1.available()>=9)
    {
        if((0x59 == Serial1.read()) && (0x59 == Serial1.read())) //Byte1 & Byte2
        {
            unsigned int t1 = Serial1.read(); //Byte3
            unsigned int t2 = Serial1.read(); //Byte4
            t2 <<= 8;
            t2 += t1;
            Serial.print(t2);
            Serial.print('\t');
            t1 = Serial1.read(); //Byte5
            t2 = Serial1.read(); //Byte6
            t2 <<= 8;
            t2 += t1;
            Serial.println(t2);
            for(int i=0; i<3; i++)</pre>
            {
```

```
Serial1.read(); ////Byte7,8,9
}
}
}
```


• 步骤 3. 我们将在串口绘图器上看到检测距离。蓝色曲线是距离,红色曲线是信号强度。

• 步骤 4. 我们也可以通过串口转 USB 转换器将传感器直接连接到 PC 的 USB 端口。我们可以使用 Grove-TF-Mini-LiDAR Master Computer Software 来监控距离和信号强度。

资源下载

- [芯片数据手册] Grove-TF-Mini-LiDAR
- [其他资源] Grove-TF-Mini-LiDAR Master Computer Software