

Shanghai Siproin Microelectronics Co.,Ltd.

Built-in Clock, Calibration Free, Single Phase Energy Meter IC with Integrated Oscillator

SSP1839 Datasheet

Date: 2021/09/08

Version: 1.03

Official Website: http://www.SIPROIN.COM

Catalog

1.	. General Description	4
	. Features	
	. Order Specification	
4.	. Block Diagram	5
5.	. Pin Assignment	5
6.	. Absolute Maximum Ratings	6
7.	. Electrical Characteristics	6
8.	. Internal Register Description	8
	8.1 Register list	8
	8.2 Special Register Description	9
	8.2.1 User mode selection register	9
	8.2.2 Temperature mode control register	10
9.	. Theory of Operation	11
	9.1 Current and voltage transient waveform measurement	11
	9.2 Channel offset correction	12
	9.3 Active Power	12
	9.4 Active power offset correction	13
	9.5 Active power anti-creep	13
	9.6 Energy Measurement	14
	9.7 Current and Voltage RMS	15
	9.8 RMS offset calibration of current and voltage	16
	9.9 Leakage/Over-current Detection	16
	9.10 Phase Angle Calculation	18
	9.11 Zero Crossing Detection	19
	9.12 Temperature Measurement	19
10	0. Communication Interface	20
	10.1 SPI	20
	10.1.1 Operation Mode	21
	10.1.2 Frame Structure	21

10.1.3 Write Operation Timing	22
10.1.4 Read Operation Timing	22
10.1.5 Fault-tolerant mechanism of SPI interface	22
10.2 UART Communication methods	23
10.2.1 Summarize	23
10.2.2 Description	23
10.2.3 Byte Formation	23
10.2.4 Write Timing	23
10.2.5 Read Timing	23
10.2.6 Timing Description	24
10.2.7 Packet sending mode	24
10.2.8 Full electrical parameter data packet format	24
10.2.9 Protection mechanism of UART interface	25
11. Package Information	26
SOP16L	26
SSOP20L	26
12. Special Instructions	
Version Change Description	27

1. General Description

SSP1839 is a built-in clock and calibration-free energy metering IC, suitable for single-phase multifunctional electricity meter, smart socket, smart home appliances, electric bicycle charging pile and other applications with better cost performance.

SSP1839 integrates 3 high-precision sigma-delta ADC, it can measure two channel of current and one channel of voltage simultaneously.

SSP1839 can measure electric parameters such as current and voltage RMS, active power, active energy, fast current RMS (for leakage detection/over-current protection), and temperature detection, waveform output and so on. SSP1839 output data through the UART/SPI interface. It is available for the smart socket, smart appliances, single-phase multi-function power meter, electric bicycle charging pile and information requirement of data acquisition in electricity applications.

SSP1839 has a patented anti-creep design, which can be combined with reasonable external hardware design to ensure that the noise energy cannot be calculated in the energy pulse when there is no load.

SS0P20L

2. Features

- 3 high-precision sigma-delta ADC, used to measure two channel of currents and one channel of voltage
- The range of current (10mA~35A) @1mohm
- The range of Active energy (1w~7700w) @1mohm@220V
- Measure RMS Voltage and Current, fast current RMS, Active Power, Active Energy
- The gain error is less than 1%, calibration-free when peripheral components meet certain conditions.
- Two current channel support electric leakage/over-current monitoring function, the threshold and response time can be configured
- Voltage zero-crossing logic output
- Built-in waveform register for load type analysis, Waveform data can be output for load type analysis
- Built-in temperature sensor, Meet the requirements of the product itself, such as over-temperature monitoring, high current node preset temperature alarm, room temperature measurement
- SPI(\$900KHz)/UART(4800bps), UART supports multi-chip address communication (SSOP20L)
- On-chip power supply monitoring, IC reset when VDD is lower than 2.7V(typical).
- On-chip voltage reference of 1.218V
- On-chip 4MHz oscillator circuit
- Power supply 3.3V, low power consumption 10mW (typical)
- Package: SSOP20L/SOP16L

3. Order Specification

Part No	Package	Manner of Packing	Devices per bag/reel
SSP1839-SOP16L	SOP16L	Reel	3000PCS
SSP1839-SSOP20L	SSOP20L	Reel	2500PCS

4. Block Diagram

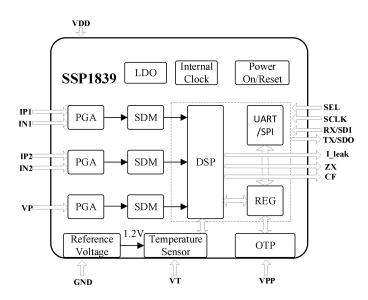


Figure 1 Internal block diagram

5. Pin Assignment

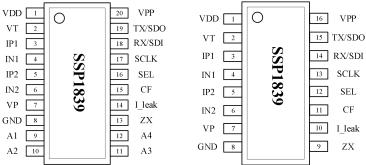


Figure 2 SSOP20L Figure 3 SOP16L

SSOP20	SOP16	Pin Name	Description
1	1	VDD	Power Supply (+3.3V).
2	2	VT	External temperature sensor(NTC) signal input.
3, 4	3, 4	IP1,IN1	Analog input of current channel A, maximum differential voltage has a maximum input range of ±50mV(35mV RMS).
5, 6	5, 6	IP2,IN2	Analog input of current channel B, maximum differential voltage has a maximum input range of ±50mV(35mV RMS).
7	7 7 VP		Analog input for voltage channel, this differential input has a maximum input range of $\pm 100 \text{mV} (70 \text{mV RMS})$.

8	8	GND	GND
9		A1	Chip address setting pin, UART multi-chip communication
10		A2	mode, used to set the chip address, A4/A3/A2/A1 binary coding
11		A3	(0000~1111), can set the address 0~15; There is pull-down
12		A4	resistance inside the pin, which is 0 level when it is suspended, and high level when the pin is directly connected to VDD. It matches the device address in the UART communication protocol.
13	9	ZX	Voltage channel zero-crossing output pin
14	10	I_leak	Channel B leakage/over-current alarm output
15	11	CF	Energy pulse output, multiplex function refer to MODE register description
16	12	SEL	Interface select pin (0: UART 1: SPI), pull-down resistance inside, disconnect is low-level (UART), connected to VDD is high-level (SPI)
17	13	SCLK	SPI clock input. If using UART interface, this pin doesn't need be connected.
18	14	RX/SDI	Data input for SPI interface/Receive line for UART interface
19	15	TX/SDO	Data output for SPI interface/Transmit line for UART interface, this pin require external pull-up resistor.
20	16	VPP	Reserved, not connected.

6. Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Power Voltage VDD	VDD	- 0.3∼+4	V
Analog Input Voltage to GND	IP1,IP2,VP	-4~+4	V
	A1~A4		
Digital Input Voltage to GND	UART_SEL	-0.3∼VDD+0.3	V
	RX/SDI		
	CF		
Digital Output Voltage to GND	I_Leak	-0.3∼VDD+0.3	V
	TX/SDO		
Operating Temperature Range	T	- 40∼+85	$^{\circ}$
Storage Temperature Range	Tstg	-40~+85	$^{\circ}$

Note: Unless specified otherwise, Tamb= 25°C

7. Electrical Characteristics

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Power Supply	VDD		3.0		3.6	V
Power Dissipation	Iop	VDD=3.3V		3		mA
Measuring range		4000:1 Input dynamic				
Weasuring range		range				

SSP1839

					551	1037
Active energy measurement		35A~100mA Input@		0.2		%
accuracy (large signal)		1mohm sampling resistor				
Active energy measurement		100mA~50mA Input@		0.4		%
accuracy (small signal)		1mohm sampling resistor				
Active energy measurement		50mA~10mA Input@		0.6		%
accuracy (tiny signal)		1mohm sampling resistor				
RMS measurement		35A~100mA Input@		0.2		%
accuracy(large signal)		1mohm sampling resistor				
RMS measurement		100mA~50mA Input@		2		%
accuracy(small signal)		1mohm sampling resistor				
RMS measurement		50mA~10mA Input@		6		%
accuracy(tiny signal)		1mohm sampling resistor				
Fast RMS response time	50Hz	Can be set to cycle/half	10		40	mS
_	60Hz	cycle	8.3		33	mS
Zero-crossing signal output delay				571		uS
Measurement error caused by						
phase angle between channels	PF08err	Phase advance 37 °			0.5	%
	Proteii	(PF=0.8)			0.3	70
(capacitance)						
Measurement error caused by	PF05err	Phase delay 60 °			0.5	%
phase angle between channels	Proserr	(PF=0.5)			0.3	70
(sensibility)						
AC power suppression (output	A CDCDD	ID/NI 100 N/			0.1	0/
frequency amplitude	ACPSRR	IP/N=100mV			0.1	%
variation)						
DC power suppression (output	DODODD	AND AL 100 AL			0.1	0/
frequency amplitude	DCPSRR	VP/N=100mV			0.1	%
variation)		D:001	-			
Analog input level (current)		Differential current input			50	mV
		(peak)				
Analog input level (voltage)		Differential voltage input			200	mV
		(peak)				
Analog input impedance				370		kΩ
SEL pull-down resistor		SEL(pull-down)		56.9		kΩ
Analog input bandwidth		(-3dB)		3.5		kHz
Internal voltage reference	Vref			1.218		V
Logic input high-level		VDD=3.3V±5%	2.6			V
Logic input low-level		VDD=3.3V±5%			0.8	V
Logic output high-level		VDD=3.3V±5%	VDD			V
Logic output ingii-levei		IOH=5mA	-0.5			v
Logio output love lovel		VDD=3.3V±5%			0.5	17
Logic output low-level		IOL=5mA			0.5	V
1						

Note: Unless specified otherwise, Tamb= 25°C

All voltage values take GND terminal potential as reference point.

Test conditions VDD=3.3V, Built-in crystal oscillator, electric energy is measured by CF output.

8. Internal Register Description

8.1 Register list

01111	External Internal								
Address	Symbol	R/W	R/W	Bits	Default	Description			
Electrical parameter register (read only)									
0x00	IA_FAST_R MS	R	W	24	0x000000	Channel A fast RMS, unsigned			
0x01	IA_WAVE	R	W	20	0x00000	Channel A current waveform register, signed			
0x02	IB_WAVE	R	W	20	0x00000	Channel B current waveform register, signed			
0x03	V_WAVE	R	W	20	0x00000	Voltage waveform register, signed			
0x04	IA_RMS	R	W	24	0x000000	Channel A current RMS register, unsigned			
0x05	IB_RMS	R	W	24	0x000000	Channel B current RMS register, unsigned			
0x06	V_RMS	R	W	24	0x000000	Voltage RMS register, unsigned			
0x07	IB_FAST_R MS	R	W	24	0x000000	Channel B fast RMS, unsigned			
0x08	A_WATT	R	W	24	0x000000	Channel A active power register, signed			
0x09	B_WATT	R	W	24	0x000000	Channel B active power register, signed			
0x0A	CFA_CNT	R	W	24	0x000000	Channel A active energy pulse count, unsigned			
0x0B	CFB_CNT	R	W	24	0x000000	Channel B active energy pulse count, unsigned			
0x0C	A_CORNER	R	W	16	0x0000	Channel A current voltage waveform phase angle register			
0x0D	B_CORNER	R	W	16	0x0000	Channel B current voltage waveform phase angle register			
0x0E	TPS1	R	W	10	0x000	Internal temperature register, unsigned			
0x0F	TPS2	R	W	10	0x000	External temperature register, unsigned			
		J	Jser operated	d registe	r (read and wr	ite)			
0x10	IA_FAST_R MS_CTRL	R/W	R	16	0xFFFF	Channel A fast RMS control register			
0x11	IA_CHOS	R/W	R	8	0x00	Channel A current DC offset correction			
0x12	IB_CHOS	R/W	R	8	0x00	Channel B current DC offset correction			
0x13	IA_RMSOS	R/W	R	8	0x00	Channel A current RMS offset adjust register			
0x14	IB_RMSOS	R/W	R	8	0x00	Channel B current RMS offset adjust register			

							Channel A sative nerven affect adjust
0x	15	A WATTOS	R/W	R	8	0x00	Channel A active power offset adjust
		_					register
Ox	16	B WATTOS	R/W	R	8	0x00	Channel B active power offset adjust
UX	.10	b_WAITOS	IV/ VV	K	0	UXUU	register
	1.7	WA CDEED	D/III	D	0	0.00	Active power no-load threshold
UX	17	WA_CREEP	R/W	R	8	0x0B	register
0x	18	MODE	R/W	R	16	0x0000	User mode selection register
	10	SOFT_RES	D/W	D	2.4	0.000000	When 0x5A5A5A is written, the user
UX	19	ET	R/W	R	24	0x000000	area register is reset to default
							Write protection register. After writing
	1 4	USR_WRPR		0	0x55, the user operation register can be		
UX	1A	OT	R/W	R	8	8 0x00	written. Write other values, user
							operated register area is not writable
0x	1B	TPS_CTRL	R/W	R	16	0x07FF	Temperature mode control register
	1.0	TTD G 2	D/III	-		0.0000	External temperature sensor gain
0x	1C	TPS2_A	R/W	R	8	0x0000	coefficient adjust register
				_			External temperature sensor offset
0x	1D	TPS2_B	R/W	R	8	0x0000	coefficient adjust register
		IB FAST R				0xFFFF	
0x	1E	MS CTRL	R/W	R	16		Channel B fast RMS control register
	1D 1E	TPS2_B IB_FAST_R MS_CTPL	R/W	R R	8	0x0000	External temperature sensor offset

8.2 Special Register Description

8.2.1 User mode selection register (Note: X indicates either 0 or 1)

0x18	MODE	User mode selection register						
No.	name	default value	default value description					
				00 : High pass, AC measurement 01:same as 00				
[1:0]	IA_F_SEL	0600	Current waveform IA selection through filter	10 : Low pass, DC measurement				
				11 : Full wave, AC/DC measurement				
				00 : High pass, AC measurement				
[3:2]	IB_F_SEL	0b00	Current waveform IB selection through filter	01:same as 00 10 : Low pass, DC measurement				
				11: Full wave, AC/DC measurement				
			Voltage waveform	00 : High pass, AC measurement				
[5:4]	V_F_SEL	0ь00	selection through filter	01:same as 00 10 : Low pass, DC measurement				

SSP1839

	•				
				11: Full wave, AC/DC measurement	
6	L_F_SEL	0b0	Channel A/B fast effective value selection through filter	0: High pass filter front output1: High pass filter behind output	
7	L_WAVE_SEL	0b0	IB_WAVE waveform register output selection	IB channel waveform IB fast channel waveform	
8	RMS_UPDATE_SE L	0b0	RMS register update rate	0: 400ms 1: 800ms	
9	AC_FREQ_SEL	0b0	AC frequency select	0: 50Hz 1: 60Hz	
10	Reserved	0b0	rese	rved	
11	CF_SEL	0b0	CF pin output power pulse selection	0: Channel A 1: Channel B	
12	CF_UNABLE	0Ь0	CF output function selection	0: Electric pulse, enable by MODE[11] configured 1: alarm function enable by TPS_CTRL[14] configured	
13~1 5	reserved	3b000	reserved		

8.2.2 Temperature mode control register

0x1B	TPS_CTRL		Temperature mode co	ntrol register
No.	name	default value	des	cription
			[15] Temperature switch, default 0b0,Open the temperature measurement	0: on 1: off
			[14] Alarm switch, default 0b0,	Temperature alarm on Channel A over-current and leakage alarm on
0x1B	TPS_CTRL	0x07FF	[13:12]] Temperature measurement selection, default 0b00 Automatic temperature measurement	00: Automatic temperature measurement 01: the same as 00 10: Internal temperature measurement 11: External temperature measurement
			[11:10]Temperature measurement interval default 0b01 100ms	00: 50ms 01: 100ms 10: 200ms 11: 400ms

	[9:0] External temperature	
	measurement alarm threshold	Alarm when TPS2 register value is
	setting, default 0x3FF,not	greater than or equal to it.
	alarm	

9. Theory of Operation

SSP1839 is composed of analog signal processing module and digital signal processing module. The analog module includes three-channel PGA, three-channel sigma-delta ADC, internal clock, power on/reset monitor, temperature sensor, LDO and other related analog modules. The digital module is digital signal processing module (DSP).

9.1 Current and voltage transient waveform measurement

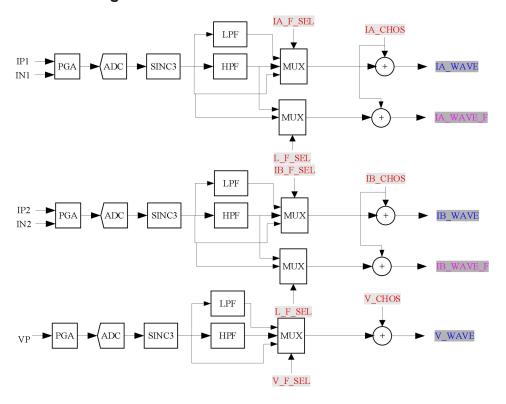


Figure 4

As shown in the figure above, two channels of current and one channel of voltage pass through the analog module amplifier (PGA) and the high-precision analog-to-digital conversion (ADC) respectively to get three channels of 1bit PDM to the digital module. The digital module passes through the SINC3 filter (SINC3), optional high-pass filter (HPF) or low-pass filter (LPF) and channel offset correction modules. Obtain the required current waveform data and voltage waveform data (IA_WAVE, IB_WAVE, V WAVE).

HPF and LPF are optional for the three channels. HPF is an AC measurement mode, LPF is a DC measurement mode, and full-wave measurement mode is a full-wave measurement mode if neither of them is passed. Set through user MODE register MODE[5:0].

SSP1839 has three high-precision ADCs, and the current is input by two-terminal differential signals: A current channel IP1/IN1, B current channel IP2/IN2, and voltage channel VP.

The current and voltage waveform data are updated at a rate of 7.8kbps. Each sampled data is 20bit signed value, which are saved in waveform registers (IA_WAVE, IB_WAVE, V_WAVE). The waveform value can be read continuously when the SPI rate is greater than 375Kbps.

Addmass	Symbol	External	Internal	Bits	Default	Description	
Address	Symbol	R/W	R/W	Dits	Default	Description	
0x01	IA WAVE	R	W	20	0x00000	Channel A current waveform	
UXU1	IA_WAVE	K	VV	20	0x00000	register	
0x02	IB WAVE	R	W	20	0x00000	Channel B current waveform	
0x02	ID_WAVE	K	VV	20	000000	register	
0x03	V_WAVE	R	W	20	0x00000	Voltage waveform register	

9.2 Channel offset correction

The SSP1839 contains two 8-bit calibration registers (IA_CHOS, IB_CHOS) with a default value of 00H. They eliminate the deviation caused by the analog-to-digital conversion of the current channel and the voltage channel respectively by the data in the form of the complement of 2, Bit[7]is a symbol Bit.The deviation here may be due to the offset generated by the input and the ANALOG-to-digital conversion circuit itself. The offset correction allows the waveform offset to be 0 without load.

Address	Symbol	External	Internal	Bits	Default	Description
Audiess	Symbol	R/W	R/W	Dits	Detault	Description
0 11	IA CHOC	R/W	R	8	000	Current channel A DC offset
0x11	IA_CHOS	K/W	K	0	0x00	correction
0.12	ID CHOC	D/XX	D	0	0.00	Current channel B DC offset
0x12	IB_CHOS	R/W	R	8	0x00	correction

These registers are used for DC measurement mode, IA/IB/V LPF SEL=1.

Correction formula: CHOS = $\frac{\text{WAVE-WAVE0}}{2^4}$

WAVE is the corrected waveform value, WAVE0 is the uncorrected waveform value;

Corresponding RMS value: RMS = RMS0 + $\frac{3125*CHOS}{4}$

RMS is the corrected valid value, RMS0 is the uncorrected valid value.

9.3 Active Power

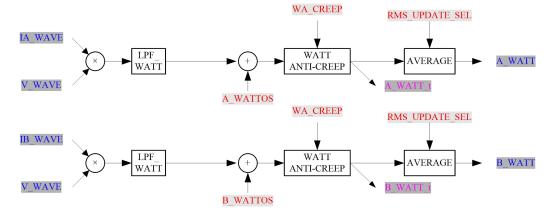


Figure 5

Addmoss	Cymbol	External	Internal	Bits	Default	Description	
Address	Symbol	R/W	R/W	Dits	Delault	Description	
0x08	A_WATT	R	W	24	0x000000	Channel A active power register	
0x09	B_WATT	R	W	24	0x000000	Channel B active power register	

Formula for calculating active power: A/B_WATT = $\frac{4046*I(A)*V(V)*COS~(\phi)}{Vref^2}$

I(A) and V(V) are the voltage RMS of analog input PIN(IP&IN, VP&GND), φ is the phase angle between I(A) and V(V) (AC signal), Vref is the on-chip reference voltage, the typical value is 1.218V.

This register indicates whether the active power is positive or negative. Bit[23] is the symbol Bit. Bit[23]=0 means the current power is positive and Bit[23]=1 means the current power is negative, in complement form.

9.4 Active power offset correction

SSP1839 has two 8-bit active power offset adjust registers (A_WATTOS, B_WATTOS), default value is 00H. It eliminate the offset of active power in the measurement of electric energy with the data in the form of complement of 2. Bit[7] is the symbol Bit. The offset may come from board level noise or crosstalk. Offset adjustment can make the values in the active power register close to 0 with no load.

Address	Symbol	External R/W	Internal R/W	Bits	Default	Description
0x15	A_WATTOS	R/W	R	8	0x00	Channel A active power offset adjust register
0x16	B_WATTOS	R/W	R	8	0x00	Channel B active power offset adjust register

$$WATTOS = \frac{WATT - WATT0}{8 \times 3.05172}$$

WATT is the active power after adjustment, and WATT0 is the active power before adjustment.

9.5 Active power anti-creep

SSP1839 has the patented power anti-creep function, which ensures that the power of board level noise will not accumulate when there is no load.

This active power no-load threshold register(WA_CREEP) is 8bit unsigned data, default value is 0BH. The corresponding relationship between this value and the active power register value is shown in the following formula. When the absolute value of the input active power signal is less than this value, the output active power is set to 0. This can make the value of the active power register is 0 and the energy does not accumulate in the case of no load, even if there is a tiny noise signal.

Address	Symbol	External R/W	Internal R/W	Bits	Default	Description
0x17	WA CREEP	R/W	R	8	0x0B	Active power no-load threshold
01117	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	10	1.		01102	register

Set WA_CREEP based on the value of the power register A_WATT, their corresponding relationship as below:

$$WA_CREEP = \frac{WATT}{3.0517578125*8}$$

When the channel is in the anti-creep state, the RMS current register of this channel is also set to 0.

9.6 Energy Measurement

SSP1839 provides energy pulse measurement. The active instantaneous power is integrated by time to get active energy and output calibration pulse CF in proportion. CFA_CNT and CFB_CNT register saves the count of output energy pulse.

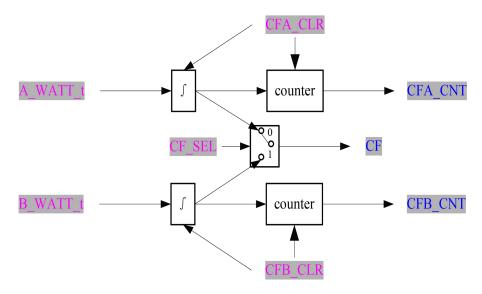


Figure 6

0x18	MODE	User mode selection register						
No.	name	default value	descript	tion				
10	Reserved	0b0	reserve	ed				
11	CF_SEL	060	CF pin output power pulse selection	0: Channel A 1: Channel B				
12	CF_UNABLE	0b0	CF output function selection	0: Electric pulse, enable by MODE[11] configured 1: alarm function enable by TPS_CTRL[14] configured				

Firstly, set MODE[12]=0 to select CF pin to output power pulse, and then set MODE[11] to select power pulse of channel A or channel B to output.

Address	Symbol	External	Internal	Bits	Default	Description
Audress	Symbol	R/W	R/W	Dits	Delault	Description
0x0A	CFA CNT	R	W	24	0x000000	Channel A active energy pulse
UXUA	CIA_CIVI	K	VV	24	0.000000	count, unsigned
O _w OD	CED CNT	R	W	24	0**000000	Channel B active energy pulse
0x0B	CFB_CNT	K	VV	24	0x000000	count, unsigned

The count of active energy pulses corresponds to the consumption of electricity. The result is stored in two registers, CFA_CNT and CFB_CNT. The count of pulses can be counted directly from the CF pin through I/O interruption. When the period of CF is less than 180ms, the pulse is 50% duty cycle. When it is greater than or equal to 180ms, the fixed pulse width of high-level is 90ms.

Note: CFA_CNT, CFB_CNT is pulse algebraic sum accumulation. It means that pulse plus at positive energy and minus at negative energy.

The cumulative time of each CF pulse: $t_{CF} = \frac{1638.4*256}{WATT}$

WATT is the corresponding active power register value (A WATT, B WATT)

9.7 Current and Voltage RMS

The RMS of three channels is shown in the figure below. After the square circuit (X^2) , the low-pass filter (LPF_RMS) and the ROOT circuit (ROOT), the instantaneous value RMS_t of RMS is calculated, and then the average value of the three channels (A RMS, B RMS, V RMS) is calculated.

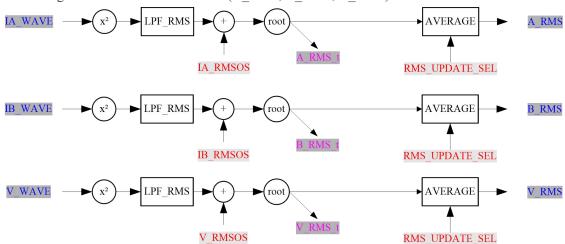


Figure 7

Address	Symbol	External	Internal	Bits	Default	Description			
Address	Symbol	R/W	R/W	Dits	Delault	Description			
0x04	IA RMS	R	W	24	0x000000	Channel A current RMS register,			
0x04	IA_KWIS	K	VV	24	0x000000	unsigned			
005	ID DMC	R	W	24	0000000	Channel B current RMS register,			
0x05	IB_RMS	K	W	24	0x000000	unsigned			
0x06	V_RMS	R	W	24	0x000000	Voltage RMS register, unsigned			

0x18	MODE	User mode selection register				
No.	name	default description value				
8	RMS_UPDATE_SEL	0ь0	RMS register update rate	0: 400ms 1: 800ms		

Set MODE[8].RMS_UPDAT_SEL, the average refresh time of RMS can be selected as 400ms or 800ms, and the default value is 400ms. When a current channel is in anti-creep state, the RMS of the current channel is 0.

The current RMS conversion formula: IA/B_RMS = $\frac{324004*I(A)}{Vref}$

The voltage RMS conversion formula: $V_RMS = \frac{79931*V(V)}{Vref}$

Vref is the reference voltage, the typical value is 1.218V.

I(A) is the input signal between IP1 and IN1 pins (mV), and V(V) is the input signal of VP pins (mV).

9.8 RMS offset calibration of current and voltage

SSP1839 has two 8-bit RMS offset register (IA_RMSOS and IB_RMSOS), whose default value is 00H. It is used to calibrate the deviation in RMS with the complement form of 2. This deviation may come from the input noise.Because there is a square operation in calculating the RMS, this may introduce DC offset caused by noise.The deviation calibration can make the value in the RMS register close to 0 without load.

Adduses	Cymhol	External	Internal	D:4a	Default	Dogovintion
Address	Symbol	R/W	R/W	Bits	Default	Description
0x13	IA RMSOS	R/W	R	8	0x00	Channel A current RMS offset
0X13	IA_KWISOS	IC/ W	K	0	UXUU	adjust register
0-:14	ID DMCOC	D/W	D	0	000	Channel B current RMS offset
0x14	IB_RMSOS	R/W	R	8	0x00	adjust register

Calibration formula: RMSOS = $\frac{RMS^2 - RMS0^2}{9.3132 \times 2^{15}}$

RMS0 is the RMS current value before correcting and RMS is the RMS current value after correcting o

9.9 Leakage/Over-current Detection

SSP1839 has two channels A/B of fast RMS register, which can detect half cycle or cycle RMS. This function can be used for leakage or over-current detection. The source of waveform L_WAVE is shown below.

HPF can be passed or not passed, HPF is not passed by default, can get the absolute value of IA/B_WAVE_F accumulate by half-cycle or one cycle time, which is selected by FAST_RMS_CTRL[15]. Cycle accumulation is selected by default, The maximum response time is 40ms (50Hz) or 33mS (60Hz), Note that the runout of IA/IB_FAST_RMS register is relatively large when half cycle wave accumulation occurs. Distinguish between 50Hz and 60Hz half-cycle time (AC FREQ SEL).

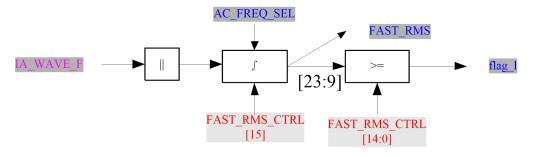


Figure 8

Address	Symbol	External	Internal	Bits	Dofoult	Description
Address	Symbol	R/W	R/W	DIUS	Default	
0x10	IA_FAST_RMS_CT RL	R/W	R	16	0xFFFF	Channel A fast current RMS control register
0x1E	IB_FAST_RMS_CT RL	R/W	R	16	0xFFFF	Channel B fast current RMS control register

Set the refresh time to half-cycle or cycle by IA_FAST_RMS_CTRL and IB_FAST_RMS_CTRL, and set the fast RMS threshold (Leakage or over-current threshold).

0x10	MODE	Fast RMS register			
No.	name	default value description			
			[15]Channel A fast RMS refresh	0: half-cycle	
010	0x10 IA_FAST_RMS_CTRL 0	0xFFFF	time	1: cycle	
UXIU		UXFFFF	[14:0]Channel A fast RMS		
			threshold		
			[15]Channel B fast RMS	0: half-cycle	
0x1E	ID EAST DMS CTDI	0xFFFF	refresh time	1: cycle	
UXIE	IB_FAST_RMS_CTRL	UXFFFF	[14:0]Channel B fast RMS		
			threshold		

Set AC frequency by MODE[9].

0x18	MODE	User mode selection register				
No.	name	default value	description			
0	9 AC_FREQ_SEL	01-0	AC frequency	0: 50Hz		
9		0ь0	selection	1: 60Hz		

Refresh the 24-bit unsigned RMS register according to one cycle or half cycle, Bit[23:9] of the FAST_RMS register compare with the leakage/over-current threshold FAST_RMS_CTRL [14:0], if the value is greater than or equal to the set threshold, then leakage/over-current alarm output pin will be high level.

Address	Symbol	External R/W	Internal R/W	Bits	Default	Description
0x00	IA FAST RMS	R	W	24	0x000000	Channel A fast current
						RMS, unsigned Channel A fast current
$0x07$ IB_FAST_R	IB_FAST_RMS	R	W	24	0x000000	RMS, unsigned

Channel B leakage/over-current alarm output indicator pin is I_leak, it can be directly output without configuration.

Channel A leakage/over-current alarm output indicator pin is CF, set MODE[12]=1 and TPS CTRL[14]=1 before use it.

0x18	MODE	User mode selection register				
No.	name	default value	description			
12	12 CF_UNABLE	060	CF output function	0: energy pulse, enable by		
12		0.00	selection	MODE[11] configured		

		1: Temperature
		measurement/Leakage alarm,
		enable by TPS[14] configured

0x1B	TPS_CTRL	Temperature mode control register			
No.	name	default value	description		
			A 10 mm	0: Temperature alarm on	
14	14 ALERT_CTRL	0b0	Alarm selection	1: Channel A leakage/over-current alarm	
			SCICCHOIL	on	

Since the fast effective values are updated by cycle or half-cycle, the interrupt response time is up to 2 cycles or 2 half-cycles.

9.10 Phase Angle Calculation

SSP1839 has phase angle measurement function. The reactive quadrant can be indicated by the angle of A/B current and voltage respectively by calculating the positive zero-crossing time difference between current and voltage. It is updated to the register CORNER_A/CORNER_B when the current is positive zero crossing. The register is a 16-bit unsigned number.

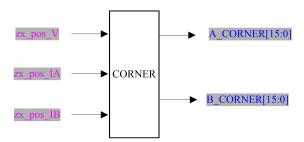


Figure 9

Address	Symbol	External R/W	Internal R/W	Bits	Default	Description
0x0C	A_CORNER	R	W	16	0x0000	Channel A current voltage waveform phase angle register
0x0D	B_CORNER	R	W	16	0x0000	Channel B current voltage waveform phase angle register

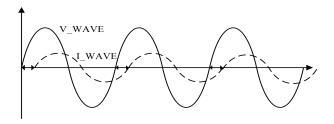


Figure 10

Phase Angle conversion formula: $2*pi*A/B_CORNER*\frac{f_c}{f_0}$, The unit is radian

Among them, f_c is the frequency of the AC signal source, the default value is 50Hz. f_0 is the sampling frequency, the typical value is 1MHz.

9.11 Zero Crossing Detection

SSP1839 has the voltage zero-crossing detection function, and the zero-crossing signal is directly output by pin ZX. When ZX=0, it indicates the positive half cycle of the waveform, and when ZX=1, it indicates the negative half cycle of the waveform. The delay between the zero-crossing signal and the actual input signal is about 570us.

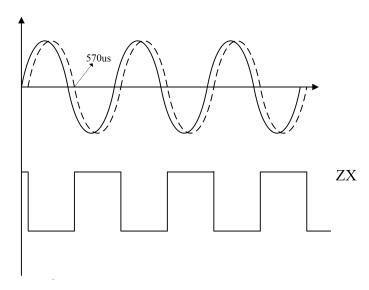


Figure 11

9.12 Temperature Measurement

SSP1839 supports internal temperature measurement and external temperature measurement.

External temperature measurement, optional output alarm indicator, Turn on the alarm function, CF pin selection output alarm signal, the CF pin will output high-level if the TPS2 is greater than or equal to the alarm threshold, Temperature indicator alarm. when the temperature value is lower than the alarm value or the alarm function is turned off, Exit alarm indicator.

0x1B	TPS_CTRL		Temperature mode control register					
No.	name	default value	description	on				
			[15] Temperature measurement switch, default 0b0,Open the temperature measurement	0: on 1: off				
0.15		[14] Alarm selection , default 0b0,	0: Temperature alarm on 1: Channel A leakage/over-current alarm on					
0x1B	TPS_CTRL	PS_CTRL 0x07FF	[13:12]Temperature measurement selection, default 0b00 Automatic temperature measurement	00: Automatic temperature measurement 01: the same as 00 10: internal temperature measurement 11: external temperature measurement				

inte	1:10]Temperature measurement erval selection , default 0b01	01: 10:	50ms 100ms 200ms 400ms
[9:	[9:0]External temperature alarm		
thre	eshold, default 0x3FF		

First set MODE[12]=1, and then set TPS_CTRL[14]=0, then CF pin is turned on to output external temperature alarm indicator.

0x18	MODE	User mode selection register				
No.	name	default value description				
12	CF_UNABLE	0b0	CF output function selection	0: energy pulse, enable by MODE[11] configured 1: Temperature measurement alarm, enable by TPS[14] configured		

The external and internal temperature values are saved in the TPS2 and TPS1 registers respectively.

Addussa	Cymahal	External	Internal	Bits Default		Degenintien	
Address	Symbol	R/W	R/W	Bits	Delault	Description	
0x0E	TPS1	R	W	10	0x0000	Internal temperature register, unsigned	
0x0F	TPS2	R	W	10	0x0000	External temperature register, unsigned	

Internal temperature measurement formula: Tx=(170/448)(TB/2-32)-45

TB is the value in TPS1.

The external temperature is measured by SAR ADC. The maximum input signal of the VT pin is 0.55*VDD (V), The TPS2 register value is the corresponding AD sampling value, full scale is 1024.

Address	Symbol	External	Internal	D:4a	Dofoult	Description	
		R/W	R/W	Bits Default		Description	
0x1C	TPS2 A	R/W	R	o	0x00	External temperature sensor gain	
UXIC	IFSZ_A	IV W	IV/ VV	K	0	UXUU	coefficient correction A register
0 _w 1D	D TPS2 B R/W	D/W	D	8	0**00	External temperature sensor offset	
0x1D	1PS2_B	K/W	R/W R 8 0x00		0x00	coefficient correction B register	

10. Communication Interface

Register data are sent as 3 bytes (24bit). The data is fixed 3 bytes, if valid data bytes are less than 3 bytes, invalid bits are filled with 0.

10.1 SPI

- Select by pin UART_SELL, multiplex with UART
- Slave mode
- •Half-duplex communication, the communication rate can be configured, the maximum communication rate is 900khz
- 8-bit data transmission, MSB first, LSB last

• Clock polarity / phase (CPOL = 0, CPHA = 1)

10.1.1 Operation Mode

The master device works in Mode1: CPOL=0, CPHA=1, In idle state, SCLK is at low-level. Data is transmitted on the first edge, which is the transition from low level to high level of SCLK, so data is received on the falling edge and data is sent on the rising edge.

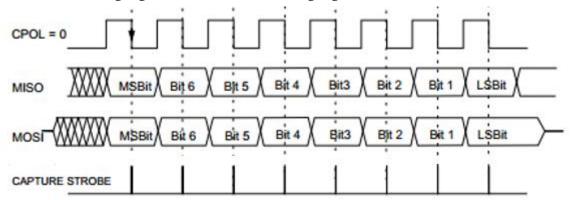


Figure 12

10.1.2 Frame Structure

In SPI communication mode, MCU send 8-bit identification byte (0x55) or (0xA5). (0x55) is the read operation identification byte and (0xA5) is the write operation identification byte. Then send the address byte of the register will be accessed (refer to SSP1839 register list). The below figure shows the data transfer sequence for read and write operations respectively. After one frame of data is transmitted, SSP1839 re-enters the communication mode. The number of SCLK pulses required for each reading and writing operation is 48 bits.

There are two types of frame structures, which are explained as follows:

1) Write operation frame

Write operation	0xA5	ADDR[7:0]	DATA_H[7:0]	DATA_M[7:0]	DATA_L[7:0]	CHECKSUM[7:0]
frame	B0000000000000000000000000000000000000					

The checksum byte is ((0xA5 + ADDR + DATA_H + DATA_M+ DATA_L)& 0xFF) and then bitwise inverted.

2) Read operation frame

The checksum byte is ((0x55 + ADDR + DATA_H + DATA_M+ DATA_L)& 0xFF) and then bitwise

inverted.

10.1.3 Write Operation Timing

The serial write timing is performed as follows. The frame identification byte {0xA5} indicates that the data communication operation is data writing. The MCU need make the data ready before the lower edge of SCLK, and shift the data at the lower edge of this clock. All remaining bits of the data are also shifted left on the lower edge of this SCLK (Figure 13).

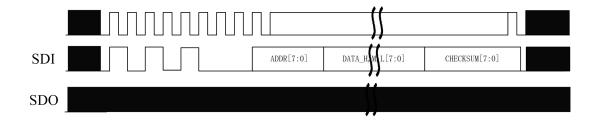


Figure 13

10.1.4 Read Operation Timing

During the data read operation, SSP1839 shifts the corresponding data to the DOUT pin on the rising edge of SCLK. DOUT keeps unchanged during SCLK =1.MCU can sample DOUT value before the next falling edge. MCU must send a read command frame first before read operation.

Figure 14

When SSP1839 is in communication mode, the frame identification byte {0x55} indicates that the data communication operation is data reading. After receiving the register address, SSP1839 starts to shift out the data in the register on the rising edge of SCLK (Figure 14). All remaining bits of the register data are shifted out on subsequent rising SCLK edges. Therefore, On the falling edge of SCLK, an external device can sample the output data of the SPI. Once the read operation is completed, SPI re-enters the communication mode. SDO enters a high-impedance state on the falling edge of the last SCLK signal.

10.1.5 Fault-tolerant mechanism of SPI interface

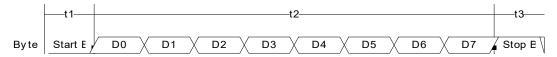
SPI supports soft reset function, reset SPI interface individually by sending 6 bytes of 0xFF.

Note: SPI communication does not support chip selection. If 20PIN package is selected, A4A2 should be grounded and A3A1 connected to high level.

10.2 UART Communication methods

10.2.1 Summarize

SSP1839 supports UART communication. The UART interface only requires two low speed optocouplers to achieve isolated communication.

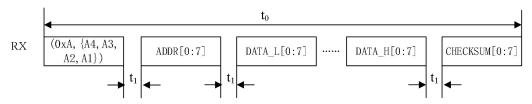

Baud rate: 4800bps Check bits: None Data bits: 8 Stop bits: 1.5 Slave mode, half-duplex communication.

Both packages have UART communication, 20 PIN package with chip selection address [A4 A3 A2 A1], device address 00 to 15 can be set.

10.2.2 Description

UART port Settings: Communication baud rate is 4800bps, no parity, stop bit 1.5.

10.2.3 Byte Formation



Start bit low duration: t1=208us;

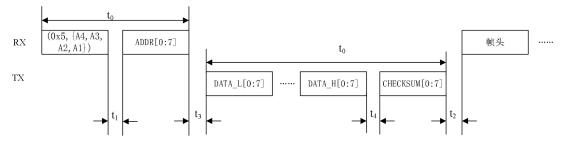
Valid data bit duration: t2=208*8=1664us Stop bit high duration: t3=208us+104us

10.2.4 Write Timing

The data write sequence of the host UART is shown in the figure below. The host sends command bytes (0xA,{A4,A3,A2,A1}) first, then write address bytes (ADDR), then sends data bytes in sequence, and finally checksum bytes.

(0xA,{A4,A3,A2,A1}) is the frame identification byte for the write operation. If [A4: A1]=0101, the device address is 5 and the frame identification byte is 0xA5.

ADDR is the internal target register in SSP1839 corresponding to the write operation.


The checksum byte is(((0xA,{A4,A3,A2,A1})+ADDR+Data_L+Data_M+Data_H)& 0xFF) and then bitwise inverted.

Note: The address of SSP1839-SOP16 is 5, that is, the first byte is 0xA5.

10.2.5 Read Timing

The timing of reading data is shown below. MCU first sends the command bte (0x5,{A4,A3,A2,A1}) and the address of the target register (ADDR), and then SSP1839 sends data bytes in sequence. Finally sends the checksum byte.

(0x5,{A4,A3,A2,A1}) is the frame identification byte for the read operation. If [A4: A1]=0101, the device address is 5 and the frame identification byte is 0x55.

ADDR is the internal target register in SSP1839 corresponding to the read operation.

The checksum byte is (((0x5,{A4,A3,A2,A1})+ADDR+Data_L+Data_M+Data_H)& 0xFF) and then bitwise inverted.

10.2.6 Timing Description

	Description	Min	Type	Max	Unit
t1	Interval between MCU sending bytes	0		20	mS
t2	Frame interval	0.5			uS
t3	Interval between the end of MCU sending register address and SSP1839		72		uS
	sending byte during read operation				
t4	Interval between SSP1839 sending bytes		116		uS

10.2.7 Packet sending mode

After received the command " $(0x5, \{A4, A3, A2, A1\})$ + 0xAA", SSP1839 will return a full electrical parameter data packet. The returned data packet has a total of 35 bytes, and 4800bps takes 77ms. The specific format is: Frame head (1byte head) \rightarrow Current A fast effective value (3byte IA_FAST_RMS) \rightarrow Current A effective value (3byte IA_RMS) \rightarrow Current B effective value (3byte IB_RMS) \rightarrow Current B fast effective value (3byte IB_FAST_RMS) \rightarrow Channel A power value (3byte A_WATT) \rightarrow Channel B power value (3byte B_WATT) \rightarrow Channel A pulse meter value (3byte CFA_CNT) \rightarrow Channel B pulse meter value (3byte CFB_CNT) \rightarrow Internal thermometer value (2byte TPS1 + 1byte 0) \rightarrow External thermometer value (2byte TPS2 + 1byte 0) \rightarrow Checksum value (1byte CHECKSUM).

10.2.8 Full electrical parameter data packet format

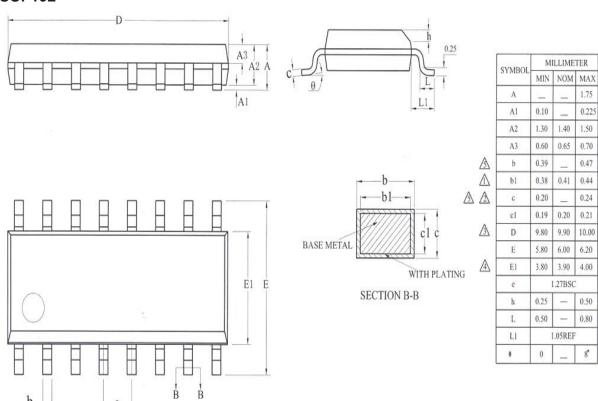
Name	No.	Value	Name	No.	Value
Frame head	0	Head (0x55)		19	B_WATT_1
	1	IA_FAST_RMS_1	B_WATT	20	B_WATT_m
IA_FAST_RMS	2	IA_FAST_RMS_m		21	B_WATT_h
	3	IA_FAST_RMS_h		22	CFA_CNT_1
	4	IA_RMS_1	CFA_CNT	23	CFA_CNT_m
IA_RMS	5	IA_RMS_m		24	CFA_CNT_h
	6	IA_RMS_h		25	CFB_CNT_1
	7	IB_RMS_1	CFB_CNT	26	CFB_CNT_m
IB_RMS	8	IB_RMS_m		27	CFB_CNT_h
	9	IB_RMS_h	TPS1	28	TPS1_1

	10	V_RMS_1		29	TPS1_m
V_RMS	11	V_RMS_m		30	0x00
	12	V_RMS_h		31	TPS2_1
	13	IB_FAST_RMS_1	TPS2	32	TPS2_m
IB_FAST_RMS	14	IB_FAST_RMS_m		33	0x00
	15	IB_FAST_RMS_h	checksum	34	checksum
	16	A_WATT_1			
A_WATT	17	A_WATT_m			
	18	A_WATT_h			

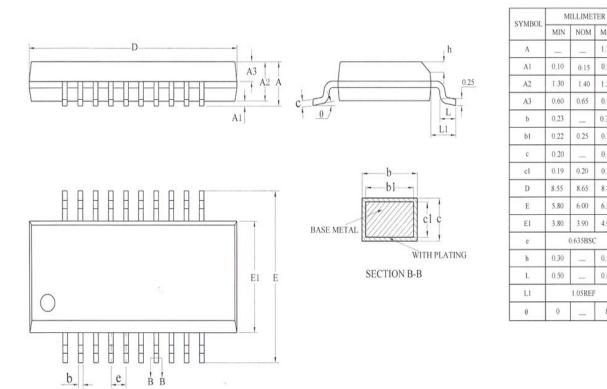
checksum= $(((0x5, \{A4,A3,A2,A1\}) + 0x55 + data1_l + data1_m + data1_h +)$ & 0xff) and then bitwise inverted.

10.2.9 Protection mechanism of UART interface

UART communication has a timeout protection mechanism. If the interval between bytes exceeds 18.5ms, the UART interface will automatically reset.


If the frame identification byte is incorrect or the checksum byte is incorrect, the frame data will be discarded.

UART module reset: The RX pin is pulled high after the low-level exceeds 6.65mS, and the UART module will be reset.



11. Package Information

SOP16L

SSOP20L

NOM MAX

1.75 0.25

1.50

0.70

0.31

0.24

6.20

4.00

0.80

8*

0.20 0.21

12. Special Instructions

The company reserves the right of final interpretation of this specification.

Version Change Description

Version: V1.03 Author: Lifeng Liu Time: 2021.9.09

Modify the record:

1. Re-typesetting the manual and checking some data

Statement

The information in the usage specification is correct at the time of publication, Shanghai Siproin Microelectronics Co. has the right to change and interpret the specification, and reserves the right to modify the product without prior notice. Users can obtain the latest version information from our official website or other effective channels before confirmation, and verify whether the relevant information is complete and up to date.

With any semiconductor product, there is a certain possibility of failure or failure under certain conditions. The buyer is responsible for complying with safety standards and taking safety measures when using the product for system design and complete machine manufacturing. The product is not authorized to be used as a critical component in life-saving or life-sustaining products or systems, in order to avoid potential failure risks that may cause personal injury or property loss.