1.0A Surface Mount Super

Fast Rectifiers-50-600V

Features

- Glass passivated device
- Ideal for surface mouted applications
- Low reverse leakage
- Metallurgically bonded construction
- High temperature soldering guaranteed: $250^{\circ} \mathrm{C} / 10$ seconds, $0.375^{\prime \prime}(9.5 \mathrm{~mm})$ lead length, 5 lbs . $(2.3 \mathrm{~kg}$) tension
- Compliant to RoHS Directive 2011/65/EU
- Compliant to Halogen-free

Mechanical data

- Case : JEDEC SOD-123 molded plastic body over passivated chip
- Terminals: Plated axial leads, solderable per MIL-STD-750, Method 2026
- Polarity: Color band denotes cathode end
- Mounting Position: Any

Package outline

Maximum ratings and Electrical Characteristics ($A T T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER	CONDITIONS	Symbol	MIN.	TYP.	MAX.	UNIT
Forward rectified current	See Fig. 2	I。			1.0	A
Forward surge current	$8.3 \mathrm{~ms} \mathrm{single} \mathrm{half} \mathrm{sine-wave} \mathrm{(JEDEC} \mathrm{methode)}$	$\mathrm{I}_{\text {FSM }}$			25	A
Reverse current	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {RRM }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	I_{R}			5.0	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {RRM }} \mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$				50	
Thermal resistance	Junction to ambient NOTE 1	$\mathrm{R}_{\text {OJA }}$		85		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Diode junction capacitance	$\mathrm{f}=1 \mathrm{MHz}$ and applied 4V DC reverse voltage	C		10		pF
Storage temperature		$\mathrm{T}_{\text {ste }}$	-65		+150	${ }^{\circ} \mathrm{C}$

SYMBOLS	$\begin{aligned} & \mathrm{V}_{\text {RRM }}{ }^{* 1} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {Rus }}{ }^{* 2} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}^{*} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{aligned} & V_{F}^{* 4} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{aligned} & \mathrm{t}_{\text {(ns }}^{* 5} \\ & \text { (ns) } \end{aligned}$	Operating temperature $\mathrm{T}_{\mathrm{J}},\left({ }^{\circ} \mathrm{C}\right)$
DSF1A	50	35	50	0.95	35	-55 to +150
DSF1B	100	70	100			
DSF1C	150	105	150			
DSF1D	200	140	200			
DSF1E	300	210	300	1.25		
DSF1G	400	280	400			
DSF1J	600	420	600	1.70		

Note: 1. P.C.B. mounted with $0.2 \times 0.2^{\prime \prime}(5.0 \times 5.0 \mathrm{~mm})$ copper pad areas
2. Reverse recovery time test condition, $\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~A}, \mathrm{I}_{\mathrm{R}}=1.0 \mathrm{~A}, \mathrm{I}_{\mathrm{R}}=0.25 \mathrm{~A}$

Rating and characteristic curves

FIG.1-TYPICAL FORWARD

FIG.3- TEST CIRCUIT DIAGRAM AND REVERSE RECOVERY TIME CHARACTERISTICS

NOTES: 1. Rise Time $=7$ ns max., Input Impedance $=1$ megohm. 22 pF .

$$
\text { 2. Rise Time }=10 \text { ns max., Source Impedance }=50 \text { ohms }
$$

$50 / 10 \mathrm{~ns} / \mathrm{cm}$

FIG.2-TYPICAL FORWARD CURRENT DERATING CURVE

FIG.4-MAXIMUM NON-REPETITIVE FORWARD SURGE CURRENT

FIG.5-TYPICAL JUNCTION CAPACITANCE

Pinning information

Pin	Simplified outline	Symbol
Pin1 cathode Pin2 anode	1	\square

Marking

Type number	Marking code
DSF1A	E1A
DSF1B	E1B
DSF1C	E1C
DSF1D	E1D
DSF1E	E1E
DSF1G	E1G
DSF1J	E1J

Suggested solder pad layout

Dimensions in inches and (millimeters)

PACKAGE	A	B	C
SOD-123	$0.075(1.90)$	$0.055(1.40)$	$0.075(1.90)$

