

High-Precision AD/DA Board 用户手册

产品特点

Raspberry Pi 的 GPIO 接口没有 AD/DA 功能,而 High-Precision AD/DA Board 可以有效满足 Raspberry Pi 的高精度 AD/DA 转换的需求。该模块支持 Raspberry Pi A+/B+/2 代 B,具有以下特 点:

- 板载 ADS1256 芯片, 8 通道 24 位高精度 ADC(4 通道差分输入), 30ksps 采样速率
- 板载 DAC8532 芯片, 2 通道 16 位高精度 DAC
- 板载排针封装输入接口,可接入模拟信号,兼容微雪传感器接口标准,方便接入各种模拟
 传感器模块
- 板载接线端子封装输入输出接口,可接入模拟信号及数字信号,方便在各种场合使用
- 自带 AD/DA 检测电路,方便观察实验现象

板载资源

[扩展接口]

- Raspberry Pi GPIO 接口 方便接入树莓派
- AD/DA 输入输出接口(接线端子) 方便在各种场合使用
- AD 输入接口(排针)
 方便接入各种传感器模块(兼容微雪传感器接口标准)
- 8. 10K 电位器
- DAC8532
 16 位高精度 DAC, 2 通道输出
- 10. **PWR LED** 电源指示灯
- ADS1256
 24 位高精度 ADC, 8 通道(4 通道差分 输入)

[器件介绍]

- 4. **7.68M** 晶振
- LM285-2.5 提供 ADC 芯片工作基准电压
- 6. 光敏电阻
- 7. LED 输出指示灯

[跳线设置]

- 12. ADC 测试跳线
- 13. DAC 测试跳线
- 14. 电源配置跳线
- ADC 参考地设置
 AD 单端输入时,AINCOM 为参考端,可
 接地或外部参考电平

符号说明

AD/DA 输入输出接口(接线端子)(标号 2)
 AD0-AD7: AD 输入端
 AGND: 模拟地
 GND: 数字地
 VCC: 工作电压(可通过电源配置跳线控制电压输出 3.3V 或者 5V)
 DA0-DA1: DA 输出端
 AD: AD 输入接口(标号 3)

- AD0-AD7: ADS1256 模拟输入接口 D0-D3: ADS1256 的 GPIO 管脚(参考 ADS1256 数据手册) P22-P25: 树莓派 GPIO 管脚 AGND: 模拟地
- LDR: 光敏电阻(标号 6)
 通过连接 AD1 和 LDR 之间的跳线, MCU 可从 AD1 采集到该光敏电阻的输出电压。

- 4) LEDA/LEDB: 输出指示灯(标号 7)
 通过连接 LEDA/LEDB 和 DACO/DAC1 之间的跳线, LEDA/LEDB 的亮度可用于粗略表示
 DACO/DAC1 输出电压的大小。
- 5) ADJ: 10K 电位器(标号 8) 通过连接 ADO 和 ADJ 之间的跳线, MCU 可从 ADO 采集到电位器的输出电压。
- 6) PWR LED: 电源指示灯(标号 10)
- 7) 电源配置跳线(标号14)
 VCC:工作电压选择
 VREF:参考电压输入端
 3V3: 3.3V 电压输出端
 5V: 5V 电压输出端
- 8) JMP_AGND: ADC 参考地设置(标号 15)

AD 单端输入时,AINCOM 为参考端,可接地或外部参考电平。AD 差分输入可以不连接

1. 树莓派基本操作

在树莓派上使用本模块,您需要先了解一些树莓派基本操作。包括:

- 烧录树莓派镜像
- 进入 Linux 终端

如果您已经了解这些知识,可以直接跳过本节。

1.1. 如何烧录树莓派镜像?

- 1) 请在树莓派官网(<u>http://www.raspberrypi.org/downloads/</u>)下载 Raspbian 镜像。
- 2) 将下载所得的.zip 压缩包解压,得到.img 文件。
- 打开 Win32DiskImager.exe 软件,选择 Image File (.img 文件)和 Device (读卡器),点击
 write 烧写系统镜像。注意: TF 卡的容量不得低于 4GB。此操作必须搭配 TF 卡读卡器。
- 烧录完成之后,把TF卡插入到树莓派的TF卡插槽,接通电源之后即可进入树莓派系统 (首次进入可能会要求配置系统)。

1.2. 如何使用树莓派终端?

本产品所有的配套软件都需要在 Linux 终端下执行。如果您有 HDMI 显示器,那么直接连接 HDMI 显示器到树莓派,从图形界面打开 Terminal 即可。如果没有,那么可以通过 SSH 操作树 莓派终端。

- 1) 通过网线把树莓派连接到路由器。
- 2) 在接入同一路由器的电脑上打开 PuTTY 软件,输入树莓派的 IP 和端口号。您可以从路由器 设置页面获得树莓派 IP,而端口号默认是 22。
- 3) 连接方式设置为 SSH。
- 4) 点击 Open,即可进入树莓派终端。初次进入终端需要输入:

账号: pi

密码: raspberry

2. 快速入门

运行以下示例 API 代码,要安装相应的库: bcm2835(从这里下载: http://www.airspayce.com/mikem/bcm2835/)。

2.1. 模数(AD)转换步骤

- 1) 接入 High-Precision AD-DA Board 模块到树莓派。
- 2) 设置跳线:

工作电压设置为 5V: 连接 5V 到 VCC。

参考电压设置为 5V: 连接 5V 到 VREF。

设置电位器输出为模拟量输入:连接 ADJ 到 ADO。确保板子左侧的传感器接口 ADO 断开。 设置光敏电阻输出为模拟量输入:连接 LDR 到 AD1。确保板子左侧的传感器接口 AD1 断 开。连接 AINCOM 到 AGND, AD 差分输入时可以不连接。

- 3) 如需用 SSH 控制终端,请接好网线。电脑端装好 PuTTY 软件。参见 1.2 节。
- 4) 连接电源,上电。
- 5) 把配套软件目录 ADS1256 复制(可用 U 盘作为媒介)到 Raspbian 中。注意,在图形界面 环境下,系统可直接识别 U 盘。如果使用 SSH 远程连接的话,则需要把 U 盘挂载到 Linux 中,才能在纯终端环境下操作。请搜索关键字"Linux mount"以查询更多详情。
- 加载程序
 进入 ADS1256 文件夹,执行 make 编译。
- 7) 执行 sudo ./ads1256_test 注意,如果提示 command not found 的话,则先执行 chmod +x ads1256_test 让 该文件具有可执行权限。
- 8) 遮挡光敏电阻, AD1 通道电压有相应的变化。
- 9) 转动电位器, ADO 通道电压有相应的变化。
- 10) Ctrl+C 中止进程, 演示结束。

2.2. 数模(DA)转换步骤

- 1) 接入 High-Precision AD-DA Board 模块到树莓派。
- 2) 设置跳线:
 - 工作电压设置为 5V: 连接 5V 到 VCC。

参考电压设置为 5V: 连接 5V 到 VREF。

连接 DAO 到 LEDA,连接 DA1 到 LEDB。则指示灯 LEDA 的亮度将会根据 DAO 输出电压而变化。指示灯 LEDB 的亮度将会根据 DA1 输出电压而变化。

3) 如需用 SSH 控制终端,请接好网线。电脑端装好 PuTTY 软件。参见 1.2 节。

- 4) 连接电源,上电。
- 5) 把配套软件目录 DAC8532 复制(可用 U 盘作为媒介)到 Raspbian 中。注意,在图形界面环境下,系统可直接识别 U 盘。如果使用 SSH 远程连接的话,则需要把 U 盘挂载到 Linux 中,才能在纯终端环境下操作。请搜索关键字"Linux mount"以查询更多详情。
- 加载程序
 进入 DAC8532 文件夹,执行 make 编译。
- 7) 执行 sudo ./dac8532_test 注意,如果提示 command not found 的话,则先执行 chmod +x dac8532_test 让 该文件具有可执行权限。
- 8) 期望出现的现象: LEDA, LEDB 亮度渐变。

3. 接口定义

引脚号	标识	描述
1、17	3.3V	电源正(3.3V 电源输入)
2、4	5V	电源正(5V 电源输入)
3、5、7、8、10、		
18、22、24、26、	NC	NC
27、28、29、32、		
36、38、40		
6、9、14、20、	GND	电源地
25、30、34、39		
11	DRDY	ADS1256 数据就绪输出,低电平有效
12	RESET	ADS1256 复位输入
13	PDWN	ADS1256 同步/关闭电源输入,低电平有效
15	CS0	ADS1256 片选,低电平有效
16	CS1	DAC8532 片选,低电平有效
19	DIN	SPI 数据输入
21	DOUT	SPI 数据输出
23	SCK	SPI 时钟信号
31、33、35、37	GPIO	外扩至传感器接口

4. 版本历史

版本	修改	日期
1.0	初始版本	2015年6月26日
1.1	英文版本发布	2015年7月17日
	小幅修改	
1.2	变更 "DAC8552" 为 "DAC8532"	2015年10月30
		日