

Features

Micropower consumption

• 2.0V~6.0V power supply Chopper stabilized amplifier stage Open-drain output Switching for both polar of a magnet(Omnipolar) Very High Sensitivity Hall Sensor Package: 3Pin SIP

Applications

- Solid State Switch
- Home appliances, Industrial
- Position Detection

- Proximity Switch
- Smart Meter

General Description

The HX4913 is fabricated from mixed signal CMOS technology. It internally includes an on-chip Hall voltage generator, a voltage regulator for operation with supply voltages of 2.0 to 6.0 V, a sleep/awake logic for low power consumption, temperature compensation circuitry, small-signal amplifier, Hall sensor with dynamic offset cancellation system, Schmitt trigger and an open-drain output.

Either north or south poles of sufficient strength

will turn the sensor output on. The output will be turned off under no magnetic field. While the magnetic flux density (B) is larger than operating point (Bop), the output will be turned on (low), the output is held until B is lower than release point (Brp), and then turned off.

The total power consumption in normal operation is typically $10\mu W$ with a 2.7V power source. Operating temperature range of the HX4913 is from -40°C to 85°C.

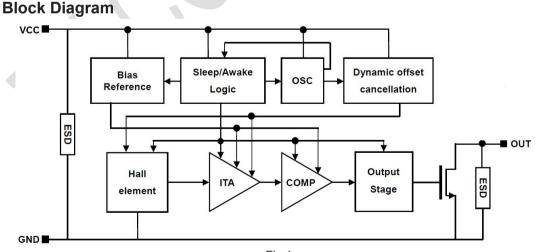
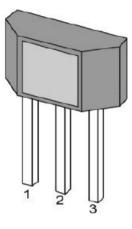



Fig 1

Pin Assignment

Fig2 3Pin-SIP

Pin Description

SIP Pin	Pin Name	Function
Number		
1	VCC	Supply Voltage
2	GND	Ground
3	OUT	Open Drain Output

Order Information

Part number	Description
HX4913TR	3Pin SIP package, bulk packaging (1000pcs/bag),Rohs/Pb Free

Absolute Maximum Ratings

Symbol	Parameter		Parameter Value		Unit
Vcc	Supply Voltage		-0.5~6.0	V	
ldd	Sup	ply Current	5	mA	
В	Magnet	ic Flux Density	Unlimited	Gauss	
Tj	Operating Junction Temperature Range		-40 to 150	°C	
Ts	Storage	Temperature	-65 to 150	°C	
PD	Power Dissipation	3Pin SIP	550	mW	

Note: Stresses greater than those listed under "Absolut Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the se or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. "Absolute Maximum Ratings" for extended period mayaffect device reliability.

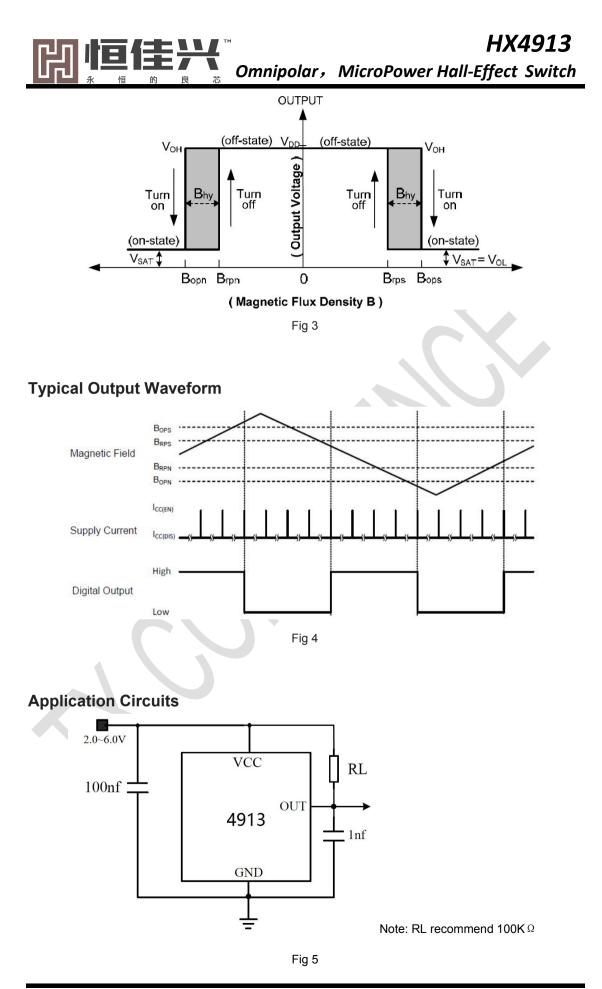
2

Recommended Operating Conditions

(TA=25°C unless otherwise noted)

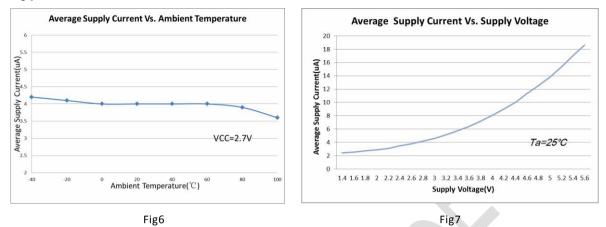
Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	2.0	6.0	V
Ambient Temperature	Та	-40	85	°C

Electrical Characteristics

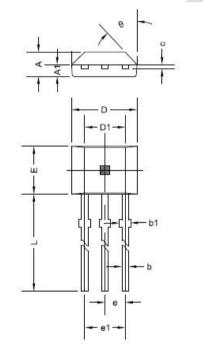

(VCC=2.7V Ta=25°C, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Icc	Average Supply Current	V _{CC} =2.7V,Output Open	-	4	10	uA
Ion	Supply current (opertating mode)	V _{CC} =2.7V	-	1.2	-	mA
I _{ST}	Supply current (stand-by mode)	V _{cc} =2.7V		2.5	-	uA
V _{SAT}	Output Saturation Voltage	lo=2mA,B>Bop	-	0.05	-	V
Iol	Output Leakage Current	Vcc=4.5V,B <brp< td=""><td>-</td><td><0.1</td><td>1</td><td>uA</td></brp<>	-	<0.1	1	uA
Tawake	Awake Time	V _{CC} =2.7V	-	70	-	us
T _{period}	Period	V _{CC} =2.7V	-	115	-	ms
ESD	Electro-Static Discharge	НВМ		4		KV

Magnetic Characteristics


(VCC=2.7V Ta=25°C, unless otherwise specified)

Characteristics	Symbol	Min	Тур	Max	Unit
Operating Point	Bops (south pole to part marking side)	-	+35	+55	Gauss
Operating Found	Bopn (nouth pole to part marking side)		-35	-55	Gauss
Releasing Point	Brps (south pole to part marking side)	+8	+25	-	Gauss
Releasing Folin	Brpn (nouth pole to part marking side)	-8	-25	-	Gauss
Hysteresis	Bhys= Bopx-Brpx	3	10	18	Gauss



Typical Performance Characteristics

Package Information

Cumhal	Dimensions in Millimeters		Dimensions in Inches		
Symbol	Min	Max	Min	Max	
A	1.420	1.620	0.056	0.064	
A1	0.660	0.860	0.026	0.034	
b	0.350	0.480	0.014	0.019	
b1	0.400	0.550	0.016	0.022	
С	0.360	0.510	0.014	0.020	
D	3.900	4.200	0.154	0.165	
D1	2.970	3.270	0.117	0.129	
E	2.870	3.124	0.113	0.123	
е	1.270 TYP.		0.050 TYP.		
e1	2.440	2.640	0.096	0.104	
L	13.600	15.500	0.535	0.610	
θ	45° TYP.		45°	TYP.	

© Shanghai HX Electronics Sci-Tech Co., Ltd

HX cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a HX product. No circuit patent license, copyrights or other intellectual property rights are implied. HX reserves the right to make changes to their products or specifications without notice. Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complet.