

Sample &

Buv

LT1013, LT1013D, LT1013M, LT1013AM

SLOS018I - MAY 1988 - REVISED JULY 2016

(4)

LT1013x Dual Precision Operational Amplifier

Technical

Documents

1 Features

- Single-Supply Operation
 - Input Voltage Range Extends to Ground
 - Output Swings to Ground While Sinking Current
- Phase Reversal Protection
- Input Offset Voltage
 - 150 µV Maximum at 25°C for LT1013AM
- Offset-Voltage Temperature Coefficient
 - 2 µV/°C Maximum for LT1013AM
- Input Offset Current
 - 0.8 nA Maximum at 25°C for LT1013AM
- High Gain
 - 1.5 V/µV Minimum (R_L = 2 k Ω) for LT1013AM
 - 0.8 V/µV Minimum (R_L = 600 kΩ) for LT1013AM
- Low Supply Current
 - 0.5 mA Maximum at T_A = 25°C for LT1013AM
- Low Peak-to-Peak Noise Voltage
 - 0.55 μV Typical
- Low Current Noise
 0.07 pA/\Hz Typical
- For Die Only Option, See LT1013-DIE

2 Applications

- Thermocouple Amplifiers
- Low-Side Current Measurement
- Instrumentation Amplifiers

3 Description

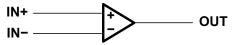
Tools &

Software

The LT1013x devices are dual precision operational amplifiers, featuring high gain, low supply current, low noise, and low-offset-voltage temperature coefficient.

Support &

Community


The LT1013x devices can be operated from a single 5-V power supply; the common-mode input voltage range includes ground, and the output can also swing to within a few millivolts of ground. Crossover distortion is eliminated. The LT1013x can be operated with both dual \pm 15-V and single 5-V supplies.

The LT1013C and LT1013D are characterized for operation from 0°C to 70°C. The LT1013DI is characterized for operation from -40°C to 105°C. The LT1013M, LT1013AM, and LT1013DM are characterized for operation over the full military temperature range of -55°C to 125°C.

Device Information ⁽¹⁾							
PART NUMBER	PACKAGE (PINS)	BODY SIZE (NOM)					
LT1013D LT1013DD	SOIC (8)	4.90 mm × 3.91 mm					
LT1013P LT1013DP	PDIP (8)	9.81 mm × 6.35 mm					
LT1013MFK LT1013AMFK	LCCC (20)	8.89 mm × 8.89 mm					
LT1013MJG LT1013AMJG	CDIP (8)	9.60 mm × 6.67 mm					

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Symbol (Each Amplifier)

Copyright © 2016, Texas Instruments Incorporated

Table of Contents

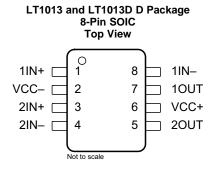
1	Feat	ures 1
2	App	lications 1
3	Desc	cription 1
4	Revi	sion History 2
5	Pin (Configuration and Functions 3
6	Spec	cifications 4
	6.1	Absolute Maximum Ratings 4
	6.2	ESD Ratings 4
	6.3	Recommended Operating Conditions 4
	6.4	Thermal Information 5
	6.5	Electrical Characteristics: LT1013C, ±15 V 5
	6.6	Electrical Characteristics: LT1013C, 5 V 6
	6.7	Electrical Characteristics: LT1013D, ±15 V 6
	6.8	Electrical Characteristics: LT1013D, 5 V 7
	6.9	Electrical Characteristics: LT1013DI, ±15 V7
	6.10	Electrical Characteristics: LT1013DI, 5 V 8
	6.11	Electrical Characteristics: LT1013M, ±15 V 8
	6.12	Electrical Characteristics: LT1013M, 5 V 9
	6.13	Electrical Characteristics: LT1013AM, ±15 V9
	6.14	Electrical Characteristics: LT1013AM, 5 V 10
	6.15	Electrical Characteristics: LT1013DM, ±15 V 10
	6.16	Electrical Characteristics: LT1013DM, 5 V 11
	6.17	Operating Characteristics 11

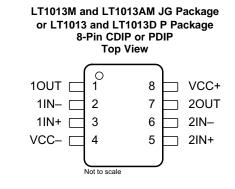
	6.18	Typical Characteristics	12
7	Deta	illed Description	17
	7.1	Overview	17
	7.2	Functional Block Diagram	17
	7.3	Feature Description	17
	7.4	Device Functional Modes	19
8	App	lication and Implementation	20
	8.1	Application Information	
	8.2	Typical Application	
9	Pow	er Supply Recommendations	
10		out	
-	10.1	Layout Guidelines	
	10.2	Layout Examples	
11		ice and Documentation Support	
••	11.1		
	11.2		
	11.3		
	11.4		
	11.5	5	
	11.6		
	11.7	0	
12		hanical, Packaging, and Orderable	
-		rmation	24

4 Revision History

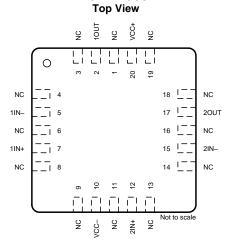
Cł	Changes from Revision H (November 2004) to Revision I					
•	Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section.					
•	Removed Ordering Information table, see POA at the end of the data sheet	1				

2




www.ti.com

Page



5 Pin Configuration and Functions

LT1013M and LT1013AM FK Package 20-Pin LCCC

Pin Functions

		PIN		1/0	DECODIDITION		
NAME	SOIC	LCCC	CDIP, PDIP	I/O	DESCRIPTION		
1IN+	1	7	3	I	Noninverting input for channel 1		
1IN-	8	5	2	I	Inverting input for channel 1		
10UT	7	2	1	0	Output for channel 1		
2IN+	3	12	5	I	Noninverting input for channel 2		
2IN-	4	15	6	I	Inverting input for channel 2		
2OUT	5	17	7	0	Output for channel 2		
NC	_	1, 3, 4, 6, 8, 9, 11, 13, 14, 16, 18, 19	_	_	No internal connection		
VCC+	6	20	8	_	Positive supply Voltage		
VCC-	2	10	4	_	Negative supply Voltage		

SLOS018I-MAY 1988-REVISED JULY 2016

www.ti.com

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
$V_{CC+} - V_{CC-}$	Supply voltage ⁽²⁾		-0.3	44	V
VI	Input voltage (any input)		V _{CC-} – 5	V _{CC+}	V
	Differential input voltage ⁽³⁾			±30	V
	Duration of short-circuit current at (or below) 25°C ⁽⁴⁾		Unlim	ited	
	Case temperature for 60 s	FK package		260	°C
	Lead temperature 1,6 mm (1/16 inch) from case for 10 s	JG package		300	°C
TJ	Operating virtual junction temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings (1) only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Supply voltage is V_{CC+} with respect to V_{CC-} . Differential voltage is IN+ with respect to IN-. (2)

(3)

(4) The output may be shorted to either supply.

6.2 ESD Ratings

			VALUE	UNIT
LT1013	in D and P packages			
	Electrostatic	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±1000	V
V _(ESD)	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	v
LT1013	D in D and P packages	5		
	Electrostatic	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±1000	N/
V _(ESD)	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	V
V _(ESD)	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. (1)

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
$V_{CC+} - V_{CC-}$	+ - V _{CC-} Supply voltage		5	30	V
		LT1013C, LT1013D	0	70	
T _A	Ambient temperature	LT1013DI	-40	105	°C
		LT1013M, LT1013AM, LT1013DM	-55	125	
VICM	Input common-mode voltage	LT1013C, LT1013D, LT1013DI	V _{CC} -	$V_{CC+} - 2$	N/
		LT1013M, LT1013AM, LT1013DM	V _{CC-} + 0.1	$V_{CC+} - 2$	V

6.4 Thermal Information

			LT1013x					
	THERMAL METRIC ⁽¹⁾	D (SOIC)	P (PDIP)	FK (LCCC)	JG (CDIP)	UNIT		
		8 PINS	8 PINS	20 PINS	8 PINS			
R_{\thetaJA}	Junction-to-ambient thermal resistance ⁽²⁾⁽³⁾	101.6	49.5	—	—	°C/W		
R _{0JC(top)}	Junction-to-case (top) thermal resistance	47.6	38.7	35.7 ⁽⁴⁾	58.5 ⁽⁴⁾	°C/W		
$R_{\theta JB}$	Junction-to-board thermal resistance	42	26.7	34.8	82.9	°C/W		
ΨJT	Junction-to-top characterization parameter	8.3	15.9	—	—	°C/W		
Ψјв	Junction-to-board characterization parameter	41.5	26.6	—	—	°C/W		
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	—	—	4.0 ⁽⁴⁾	10.8 ⁽⁴⁾	°C/W		

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

(2) Maximum power dissipation is a function of T_{J(max)}, R_{θJA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is P_D = (T_{J(max)} - T_A)/ R_{θJA}. Operating at the absolute maximum T_J of 150°C can affect reliability. Due to variation in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

(3) The package thermal impedance is calculated in accordance with JESD 51-7.

(4) R_{0JC(top)} and R_{0JC(bot)}thermal impedances are calculated in accordance with MIL-STD-883 for LCCC and CDIP

6.5 Electrical Characteristics: LT1013C, ±15 V

at specified free-air temperature, $V_{CC\pm} = \pm 15$ V, $V_{IC} = 0$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A ⁽¹⁾	MIN	TYP ⁽²⁾	MAX	UNIT
	land affect with me	D 50.0	25°C		60	300	
V _{IO}	Input offset voltage	R _S = 50 Ω	Full range			400	μV
ανιο	Temperature coefficient of input offset voltage		Full range		0.4	2.5	µV/°C
	Long-term drift of input offset voltage		25°C		0.5		μV/mo
	Input offset current		25°C		0.2	1.5	nA
I _{IO}	input onset current		Full range			2.8	ΠA
	logut biog gurrant		25°C		-15	-30	nA
I _{IB}	Input bias current		Full range			-38	-38 NA
V	Common-mode input voltage	Recommended range	25°C	-15		13.5	V
V _{ICR}	range	Recommended range	Full range	–15		13	v
V	Maximum peak output	$R_1 = 2 k\Omega$	25°C	±12.5	±14		V
V _{OM}	voltage swing	$R_{L} = 2 RS2$	Full range	±12			v
	Large-signal differential voltage amplification	$V_O = \pm 10 \text{ V}, \text{ R}_L = 600 \Omega$	25°C	0.5	0.2		
A _{VD}		$V_O = \pm 10 \text{ V}, \text{ R}_L = 2 \text{ k}\Omega$	25°C	1.2	7		V/µV
	voltage amplification		Full range	0.7			
CMRR	Common mode rejection ratio	$V_{IC} = -15 \text{ V}$ to 13.5 V	25°C	97	114		dB
CIVIRR	Common-mode rejection ratio	$V_{IC} = -14.9 \text{ V to } 13 \text{ V}$	Full range	94			uБ
1.	Supply-voltage rejection ratio	V	25°C	100	117		
k _{SVR}	(ΔΫϹϹ/ΔΫΙΟ)	$V_{CC+} = \pm 2 V \text{ to } \pm 18 V$	Full range	97			dB
	Channel separation	$V_0 = \pm 10 \text{ V}, \text{ R}_L = 2 \text{ k}\Omega$	25°C	120	137		dB
r _{id}	Differential input resistance		25°C	70	300		MΩ
r _{ic}	Common-mode input resistance		25°C		4		GΩ
			25°C		0.35	0.55	~ ^
I _{CC}	Supply current per amplifier		Full range			0.7	mA

(1) Full range is 0°C to 70°C.

(2) All typical values are at $T_A = 25^{\circ}C$.

ISTRUMENTS

EXAS

6.6 Electrical Characteristics: LT1013C, 5 V

at specified free-air temperature, $V_{CC+} = 5 V$, $V_{CC-} = 0$, $V_0 = 1.4 V$, $V_{IC} = 0$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A ⁽¹⁾	MIN	TYP ⁽²⁾	MAX	UNIT
,	land affect with an	D 50.0	25°C		90	450	
V _{IO}	Input offset voltage	R _S = 50 Ω	Full range			570	μV
	land the standard		25°C		0.3	2	- 4
10	D Input offset current		Full range			6	nA
			25°C		-18	-50	-
IB	Input bias current		Full range			-90	nA
,		De se mar de duran de	25°C	0		3.5	V
V _{ICR}	Common-mode input voltage range	Recommended range	Full range	0		3	
		Output low, No load	25°C		15	25	
		Output low, $R_L = 600 \Omega$ to GND	25°C		5	10	
			Full range			13	
V _{ом}	Maximum peak output voltage swing	Output low, I _{sink} = 1 mA	25°C		220	350	V
		Output high, No load	25°C	4	4.4		
			25°C	3.4	4		
		Output high, $R_L = 600 \Omega$ to GND	Full range	3.2			
A _{VD}	Large-signal differential voltage amplification	V_{O} = 5 mV to 4 V, R_{L} = 500 Ω	25°C		1		V/µV
	Supply autropt par amplifiar		25°C		0.32	0.5	m۸
сс	Supply current per amplifier		Full range			0.55	mA

(1) Full range is 0°C to 70°C. (2) All typical values are at $T_A = 25$ °C.

6.7 Electrical Characteristics: LT1013D, ±15 V

at specified free-air temperature, $V_{CC\pm} = \pm 15$ V, $V_{IC} = 0$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A ⁽¹⁾	MIN	TYP ⁽²⁾	MAX	UNIT
V	Input offect veltage	D 50.0	25°C		200	800	
V _{IO}	Input offset voltage	R _S = 50 Ω	Full range			1000 ^µ `	μV
α _{VIO}	Temperature coefficient of input offset voltage		Full range		0.7	5	µV/°C
	Long-term drift of input offset voltage		25°C		0.5		µV/mo
	Input offset current		25°C		0.2	1.5	nA
I _{IO}	input onset current		Full range			2.8	ΠA
	Innut blag ourrant		25°C		-15	-30	~ ^
I _{IB}	Input bias current		Full range			-38	nA
V		Decommonded range	25°C	-15		13.5	- V
VICR	Common-mode input voltage range	Recommended range	Full range	-15		13	
V		$R_{\rm L} = 2 k\Omega$	25°C	±12.5	±14		
V _{ом}	Maximum peak output voltage swing	$n_{\rm L} = 2 n_2$	Full range	±12			V
	Large-signal differential voltage amplification	$V_0 = \pm 10 \text{ V}, \text{ R}_L = 600 \Omega$	25°C	0.5	2		
A _{VD}		$V_{O} = \pm 10 \text{ V}, \text{ R}_{L} = 2 \text{ k}\Omega$	25°C	1.2	7		V/µV
			Full range	0.7			1
CMRR	Common mode rejection ratio	$V_{IC} = -15 \text{ V}$ to 13.5 V	25°C	97	114		dB
CIVIRR	Common-mode rejection ratio	$V_{IC} = -14.9 \text{ V to } 13 \text{ V}$	Full range	94			uв
Ŀ	Supply voltage rejection ratio (A)/CC/A)/IO)		25°C	100	117		dB
k _{SVR}	Supply-voltage rejection ratio ($\Delta VCC / \Delta VIO$)	$V_{CC+} = \pm 2 V \text{ to } \pm 18 V$	Full range	97			uв
	Channel separation	$V_0 = \pm 10 \text{ V}, \text{ R}_L = 2 \text{ k}\Omega$	25°C	120	137		dB
r _{id}	Differential input resistance		25°C	70	300		MΩ
r _{ic}	Common-mode input resistance		25°C		4		GΩ
			25°C		0.35	0.55	
I _{CC}	Supply current per amplifier		Full range			0.6	mA

Full range is 0°C to 70°C. (1)

(2) All typical values are at $T_A = 25^{\circ}C$.

6 Submit Documentation Feedback

6.8 Electrical Characteristics: LT1013D, 5 V

at specified free-air temperature, $V_{CC+} = 5 \text{ V}$, $V_{CC-} = 0$, $V_O = 1.4 \text{ V}$, $V_{IC} = 0$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A ⁽¹⁾	MIN	TYP ⁽²⁾	MAX	UNIT
,	Innut offect veltage	B 50.0	25°C		250	950	
V _{IO}	Input offset voltage	R _S = 50 Ω	Full range			1200	μV
1			25°C		0.3	2	nA
10	Input offset current		Full range			6	ПA
1	Innut biog gurrant		25°C		-18	-50	
I _{IB} Ir	nput bias current		Full range			-90	nA
	Common-mode input voltage range	Decommended renge	25°C	0		3.5	V
V _{ICR}		Recommended range	Full range	0		3	v
		Output low, No load	25°C		15	25	
		Output low, $R_L = 600 \ \Omega$ to GND	25°C		5	10	
			Full range			13	
V _{OM}	Maximum peak output voltage swing	Output low, $I_{sink} = 1 \text{ mA}$	25°C		220	350	V
		Output high, No load	25°C	4	4.4		
			25°C	3.4	4		
		Output high, $R_L = 600 \Omega$ to GND	Full range	3.2			
A _{VD}	Large-signal differential voltage amplification	V_{O} = 5 mV to 4 V, R_{L} = 500 Ω	25°C		1		V/µV
1	Current per emplifier		25°C		0.32	0.5	
I _{CC}	Supply current per amplifier		Full range			0.55	mA

(1) Full range is 0°C to 70°C. (2) All typical values are at $T_A = 25$ °C.

6.9 Electrical Characteristics: LT1013DI, ±15 V

at specified free-air temperature, $V_{CC\pm} = \pm 15$ V, $V_{IC} = 0$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A ⁽¹⁾	MIN	TYP ⁽²⁾	MAX	UNIT
V	Innut offect voltoge	D 50.0	25°C		200	800	
V _{IO}	Input offset voltage	R _S = 50 Ω	Full range			1000	μV
α _{VIO}	Temperature coefficient of input offset voltage		Full range		0.7	5	µV/°C
	Long-term drift of input offset voltage		25°C		0.5		µV/mo
	Input offset current		25°C		0.2	1.5	nA
I _{IO}	input onset current		Full range			2.8	ΠA
	Input bias current		25°C		-15	-30	~ ^
I _{IB}	input bias current		Full range			-38	nA
V	Common mode input veltage renge	Recommended range	25°C	-15		13.5	V
VICR	Common-mode input voltage range	Recommended range	Full range	-15		13	v
V		P 240	25°C	±12.5	±14	v	N/
V _{OM}	Maximum peak output voltage swing	$R_L = 2 k\Omega$	Full range	±12			v
	Large-signal differential voltage amplification	$V_0 = \pm 10 \text{ V}, \text{ R}_L = 600 \Omega$	25°C	0.5	0.2		
A _{VD}		$V_{O} = \pm 10 \text{ V}, \text{ R}_{L} = 2 \text{ k}\Omega$	25°C	1.2	7		V/µV
			Full range	0.7			
CMRR	Common mode rejection ratio	$V_{IC} = -15$ V to 13.5 V	25°C	97	114		dB
CINIKK	Common-mode rejection ratio	V _{IC} = -14.9 V to 13 V	Full range	94			uв
l.	Supply veltage rejection ratio (A)/CC/A)/IO)		25°C	100	117		dB
k _{SVR}	Supply-voltage rejection ratio ($\Delta VCC / \Delta VIO$)	$V_{CC+} = \pm 2 V \text{ to } \pm 18 V$	Full range	97			uв
	Channel separation	$V_0 = \pm 10 \text{ V}, \text{ R}_L = 2 \text{ k}\Omega$	25°C	120	137		dB
r _{id}	Differential input resistance		25°C	70	300		MΩ
r _{ic}	Common-mode input resistance		25°C		4		GΩ
			25°C		0.35	0.55	
I _{CC}	Supply current per amplifier		Full range			0.6	mA

(1) Full range is -40°C to 105°C.

(2) All typical values are at $T_A = 25^{\circ}C$.

Copyright © 1988–2016, Texas Instruments Incorporated

STRUMENTS

EXAS

6.10 Electrical Characteristics: LT1013DI, 5 V

at specified free-air temperature, $V_{CC+} = 5 V$, $V_{CC-} = 0$, $V_{O} = 1.4 V$, $V_{IC} = 0$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A ⁽¹⁾	MIN	TYP ⁽²⁾	MAX	UNIT
	land affect volto se	D 50.0	25°C		250	950	
V _{IO}	Input offset voltage	$R_{S} = 50 \ \Omega$	Full range			1200	μV
	land affect aurort		25°C		0.3	2	nA
I _{IO}	Input offset current		Full range			6	
	Input bias current		25°C		-18	-50	54
I _{IB} Inpu	input bias current		Full range			-90	nA
	Common-mode input voltage range	Decommonded renge	25°C	0		3.5	v
V _{ICR}	Common-mode input voltage range	Recommended range	Full range	0		3	v
		Output low, No load	25°C		15	25	
		Output low, $R_1 = 600 \Omega$ to GND	25°C		5	10	
		Output low, $R_L = 800.02$ to GND	Full range			13	+
V _{OM}	Maximum peak output voltage swing	Output low, $I_{sink} = 1 \text{ mA}$	25°C		220	350	
		Output high, No load	25°C	4	4.4		
			25°C	3.4	4		
		Output high, $R_L = 600 \Omega$ to GND	Full range	3.2			
A _{VD}	Large-signal differential voltage amplification	$V_{\rm O}$ = 5 mV to 4 V, R _L = 500 Ω	25°C		1		V/µV
	Supply current per emplifier		25°C		0.32	0.5	m A
ICC	Supply current per amplifier		Full range			0.55	mA

(1) Full range is -40°C to 105°C.

(2) All typical values are at $T_A = 25^{\circ}C$.

6.11 Electrical Characteristics: LT1013M, ±15 V

at specified free-air temperature, $V_{CC\pm} = \pm 15$ V, $V_{IC} = 0$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A ⁽¹⁾	MIN	TYP ⁽²⁾	MAX	UNIT
N/	land the stars line of	D 50.0	25°C		60	300	
V _{IO}	Input offset voltage	R _S = 50 Ω	Full range			550	μV
α _{VIO}	Temperature coefficient of input offset voltage		Full range		0.5	2.5 ⁽³⁾	µV/°C
	Long-term drift of input offset voltage		25°C		0.5		µV/mo
	Input offset current		25°C		0.2	1.5	nA
I _{IO}	input onset current		Full range			5	ΠA
	Input biog ourrent		25°C		-15	-30	-
I _{IB}	Input bias current		Full range			-45	nA
V	Common mode input veltage renge	Decommonded renge	25°C	-15		13.5	V
VICR	Common-mode input voltage range	Recommended range	Full range	-14.9		13	v
v	Maximum peak output voltage swing	P 2k0	25°C	±12.5	±14		V
V _{OM}	Waximum peak output voltage swing	$R_L = 2 k\Omega$	Full range	±11.5			v
	Large-signal differential voltage amplification	$V_0 = \pm 10 \text{ V}, \text{ R}_L = 600 \Omega$	25°C	0.5	2		
A _{VD}		$V_{O} = \pm 10 \text{ V}, \text{ R}_{L} = 2 \text{ k}\Omega$	25°C	1.2	7		V/µV
			Full range	0.25			
CMRR	Common mode rejection ratio	$V_{IC} = -15 \text{ V} \text{ to } 13.5 \text{ V}$	25°C	97	117		dB
CIVIRR	Common-mode rejection ratio	$V_{IC} = -14.9 \text{ V} \text{ to } 13 \text{ V}$	Full range	94			uБ
L.	Supply values rejection ratio $(A)/(CC/A)/(O)$		25°C	100	117		dB
k _{SVR}	Supply-voltage rejection ratio ($\Delta VCC/\Delta VIO$)	$V_{CC+} = \pm 2 V \text{ to } \pm 18 V$	Full range	97			uБ
	Channel separation	$V_0 = \pm 10 \text{ V}, \text{ R}_L = 2 \text{ k}\Omega$	25°C	120	137		dB
r _{id}	Differential input resistance		25°C	70	300		MΩ
r _{ic}	Common-mode input resistance		25°C		4		GΩ
1	Cupply current per emplifier		25°C		0.35	0.55	
I _{CC}	Supply current per amplifier		Full range			0.7	mA

(1) Full range is -55°C to 125°C.

(2) All typical values are at $T_A = 25^{\circ}C$.

(3) On products compliant to MIL-PRF-38535, Class B, this parameter is not production tested.

6.12 Electrical Characteristics: LT1013M, 5 V

at specified free-air temperature, V_{CC+} = 5 V, V_{CC-} = 0, V_O = 1.4 V, V_{IC} = 0 (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A ⁽¹⁾	MIN	TYP ⁽²⁾	MAX	UNIT
		D 50.0	25°C		90	450	
V _{IO}	Input offset voltage	R _S = 50 Ω	Full range		400	1500	μV
		$R_{S} = 50 \Omega, V_{IC} = 0.1 V$	125°C		200	750	
			25°C		0.3	2	
1 ₁₀	Input offset current		Full range			10	nA
	land birg compart		25°C		-18	-50	
IB	Input bias current		Full range			-120	_120 nA
V _{ICR}	Common-mode input voltage range	December de la serve	25°C	0		3.5	
		Recommended range	Full range	0		3	V
		Output low, No load	25°C		15	25	
		Output low, $R_L = 600 \Omega$ to GND	25°C		5	10	
			Full range			18	
V _{OM}	Maximum peak output voltage swing	Output low, I _{sink} = 1 mA	25°C		220	350	V
		Output high, No load	25°C	4	4.4		
			25°C	3.4	4		
		Output high, $R_L = 600 \Omega$ to GND	Full range	3.1			
A _{VD}	Large-signal differential voltage amplification	$V_0 = 5 \text{ mV}$ to 4 V, $R_L = 500 \Omega$	25°C		1		V/µV
	0		25°C		0.32	0.5	
I _{CC}	Supply current per amplifier		Full range			0.65	mA

(1) Full range is -55°C to 125°C.

(2) All typical values are at $T_A = 25^{\circ}C$.

6.13 Electrical Characteristics: LT1013AM, ±15 V

at specified free-air temperature, $V_{CC\pm} = \pm 15$ V, $V_{IC} = 0$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A ⁽¹⁾	MIN	TYP ⁽²⁾	MAX	UNIT
V		D 50.0	25°C		40	150	
V _{IO}	Input offset voltage	R _S = 50 Ω	Full range			300	μV
α _{VIO}	Temperature coefficient of input offset voltage		Full range		0.4	2 ⁽³⁾	µV/°C
	Long-term drift of input offset voltage		25°C		0.4		µV/mo
	Input offset current		25°C		0.15	0.8	nA
I _{IO}	input onset current		Full range			2.5	ΠA
	Input bigg ourrent		25°C		-12	-20	nA
I _{IB}	Input bias current		Full range			-30	ΠA
V	Common mode input veltage range	Becommended range	25°C	-15		13.5	V
VICR	Common-mode input voltage range	Recommended range	Full range	-14.9		13	v
V	Maximum peak output voltage swing	P 2ko	25°C	±13	±14		V
V _{OM}	Maximum peak ouput voltage swing	$R_L = 2 k\Omega$	Full range	±12			v
	Large-signal differential voltage amplification	$V_{O} = \pm 10 \text{ V}, \text{ R}_{L} = 600 \Omega$	25°C	0.8	2.5		
A _{VD}		$V_0 = \pm 10 \text{ V}, \text{ R}_L = 2 \text{ k}\Omega$	25°C	1.5	8		V/µV
			Full range	0.5			Ť
	Common mode rejection ratio	$V_{IC} = -15 \text{ V to } 13.5 \text{ V}$	25°C	100	117		٩D
CMRR	Common-mode rejection ratio	V _{IC} = -14.9 V to 13 V	Full range	97			dB
Ŀ	Supply voltage rejection ratio (A)/CC/A)//O)	V	25°C	103	120		dB
k _{SVR}	Supply-voltage rejection ratio ($\Delta VCC/\Delta VIO$)	$V_{CC+} = \pm 2 V \text{ to } \pm 18 V$	Full range	100			uв
	Channel separation	$V_0 = \pm 10 \text{ V}, \text{ R}_L = 2 \text{ k}\Omega$	25°C	123	140		dB
r _{id}	Differential input resistance		25°C	100	400		MΩ
r _{ic}	Common-mode input resistance		25°C		5		GΩ
	Supply surrent per emplifier		25°C		0.35	0.5	
I _{CC}	Supply current per amplifier		Full range			0.6	mA

Full range is -55°C to 125°C. (1)

(2)

All typical values are at $T_A = 25^{\circ}$ C. On products compliant to MIL-PRF-38535, Class B, this parameter is not production tested. (3)

Copyright © 1988–2016, Texas Instruments Incorporated

SLOS018I-MAY 1988-REVISED JULY 2016

www.ti.com

NSTRUMENTS

ÈXAS

6.14 Electrical Characteristics: LT1013AM, 5 V

at specified free-air temperature, $V_{CC+} = 5 V$, $V_{CC-} = 0$, $V_0 = 1.4 V$, $V_{IC} = 0$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A ⁽¹⁾	MIN	TYP ⁽²⁾	MAX	UNIT
		P 50.0	25°C		60	250	
V _{IO}	Input offset voltage	$R_{S} = 50 \ \Omega$	Full range		250	900	μV
		$R_{S} = 50 \ \Omega, \ V_{IC} = 0.1 \ V$	125°C		120	450	
	long to offense an unreact		25°C		0.2	1.3	-
I _{IO}	Input offset current		Full range			6	nA
	Input bias current		25°C		-15	-35	nA
I _{IB}	input bias current		Full range			-80	
	Common-mode input voltage range	Decommonded reads	25°C	0		3.5	V
VICR		Recommended range	Full range	0		3	v
		Output low, No load	25°C		15	25	
			25°C		5	10	
		Output low, $R_L = 600 \Omega$ to GND	Full range			15	
V _{OM}	Maximum peak output voltage swing	Output low, I _{sink} = 1 mA	25°C		220	350	V
		Output high, No load	25°C	4	4.4		
			25°C	3.4	4		
		Output high, $R_L = 600 \Omega$ to GND	Full range	3.2			
A _{VD}	Large-signal differential voltage amplification	$V_{\rm O}$ = 5 mV to 4 V, $R_{\rm L}$ = 500 Ω	25°C		1		V/µV
	Over the summer the second life of		25°C		0.31	0.45	4
I _{CC}	Supply current per amplifier		Full range			0.55	mA

(1) Full range is -55°C to 125°C.

(2) All typical values are at $T_A = 25^{\circ}C$.

6.15 Electrical Characteristics: LT1013DM, ±15 V

at specified free-air temperature, $V_{CC\pm} = \pm 15$ V, $V_{IC} = 0$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A ⁽¹⁾	MIN	TYP ⁽²⁾	MAX	UNIT
V	Input offect voltage	P = 50.0	25°C		200	800	μV
V _{IO}	Input offset voltage	$R_{S} = 50 \ \Omega$	Full range			1000	μv
α_{VIO}	Temperature coefficient of input offset voltage		Full range		0.5	2.5 ⁽³⁾	μV/°C
	Long-term drift of input offset voltage		25°C		0.5		µV/mo
1	Input offset current		25°C		0.2	1.5	nA
I _{IO}	input onset current		Full range			5	ΠA
1	Input bias current		25°C		-15	-30	nA
I _{IB}	input bias current		Full range			-45	ΠA
V	Common-mode input voltage range	Recommended range	25°C	-15		13.5	V
VICR	Common-mode input voltage range	Recommended range	Full range	-14.9		13	v
V	Maximum peak output voltage swing	$R_L = 2 k\Omega$	25°C	±12.5	±14		- V
V _{OM}	Maximum peak output voltage swing	$K_{L} = 2 K_{2}$	Full range	±11.5			v
	Large-signal differential voltage amplification	$V_O=\pm 10~V,R_L=600~\Omega$	25°C	0.5	2		
A_{VD}		$V_0 = \pm 10 \text{ V}, \text{ R}_L = 2 \text{ k}\Omega$	25°C	1.2	7		V/µV
			Full range	0.25			
CMRR	Common-mode rejection ratio	$V_{IC} = -15$ V to 13.5 V	25°C	97	114		dB
CIVIER	Common-mode rejection ratio	$V_{IC} = -14.9 \text{ V} \text{ to } 13 \text{ V}$	Full range	94			uВ
Ŀ	Supply voltage rejection ratio (A)(CC/A)(IO)	$V_{CC+} = \pm 2 V \text{ to } \pm 18 V$	25°C	100	117		dB
k _{SVR}	Supply-voltage rejection ratio ($\Delta VCC / \Delta VIO$)	$v_{CC+} = \pm 2 v 10 \pm 18 v$	Full range	97			uв
	Channel separation	$V_0 = \pm 10 \text{ V}, \text{ R}_L = 2 \text{ k}\Omega$	25°C	120	137		dB
r _{id}	Differential input resistance		25°C	70	300		MΩ
r _{ic}	Common-mode input resistance		25°C		4		GΩ
1	Supply current per emplifier		25°C		0.35	0.55	~^
I _{CC}	Supply current per amplifier		Full range			0.7	mA

Full range is -55°C to 125°C. (1)

(2)

All typical values are at $T_A = 25^{\circ}$ C. On products compliant to MIL-PRF-38535, Class B, this parameter is not production tested. (3)

6.16 Electrical Characteristics: LT1013DM, 5 V

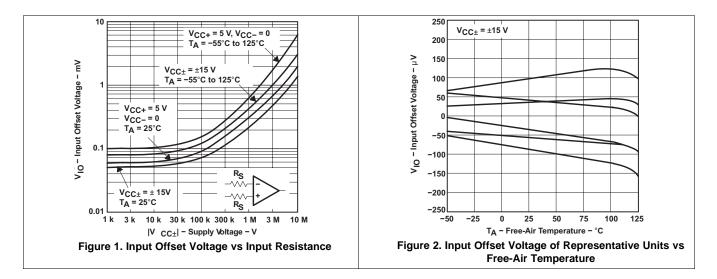
at specified free-air temperature, $V_{CC+} = 5$ V, $V_{CC-} = 0$, $V_O = 1.4$ V, $V_{IC} = 0$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A ⁽¹⁾	MIN	TYP ⁽²⁾	MAX	UNIT
		B 50.0	25°C		250	950	
V _{IO}	Input offset voltage	$R_{S} = 50 \Omega$	Full range		800	2000	μV
		$R_S = 50 \ \Omega, \ V_{IC} = 0.1 \ V$	125°C		560	1200	
l	Input offset current		25°C		0.3	2	nA
I _{IO}	input onset current		Full range			10	ПА
	Input bias current		25°C		-18	-50	nA
I _{IB}	input bias current		Full range			-120	ΠA
Vier Common modo in	Common-mode input voltage range	Recommended range	25°C	0		3.5	V
V _{ICR}	Common-mode input voltage range	Recommended range	Full range	0		3	v
		Output low, No load	25°C		15	25	V
		Output low, $R_L = 600 \ \Omega$ to GND	25°C		5	10	
			Full range			18	
V _{OM}	Maximum peak output voltage swing	Output low, I _{sink} = 1 mA	25°C		220	350	
	g	Output high, No load	25°C	4	4.4		
		Output high, $R_L = 600 \Omega$ to GND	25°C	3.4	4		
		Subut high, $R_L = 800.02$ to GND	Full range	3.1			
A_{VD}	Large-signal differential voltage amplification	V_{O} = 5 mV to 4 V, R_{L} = 500 Ω	25°C		1		V/µV
	Supply ourrest per emplifier		25°C		0.32	0.5	mA
I _{CC}	Supply current per amplifier		Full range			0.65	ША

(1) Full range is -55° C to 125° C. (2) All typical values are at T_A = 25° C.

6.17 Operating Characteristics

 $V_{CC\pm}=\pm15~V,~V_{IC}=0,~T_A=25^\circ C$


	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SR	Slew rate		0.2	0.4		V/µs
		f = 10 Hz		24		nV/√Hz
V _n	Equivalent input noise voltage	f = 1 kHz		22		nv/vHz
V _{N(PP)}	Peak-to-peak equivalent input noise voltage	f = 0.1 Hz to 10 Hz		0.55		μV
l _n	Equivalent input noise current	f = 10 Hz		0.07		pA/√Hz

6.18 Typical Characteristics

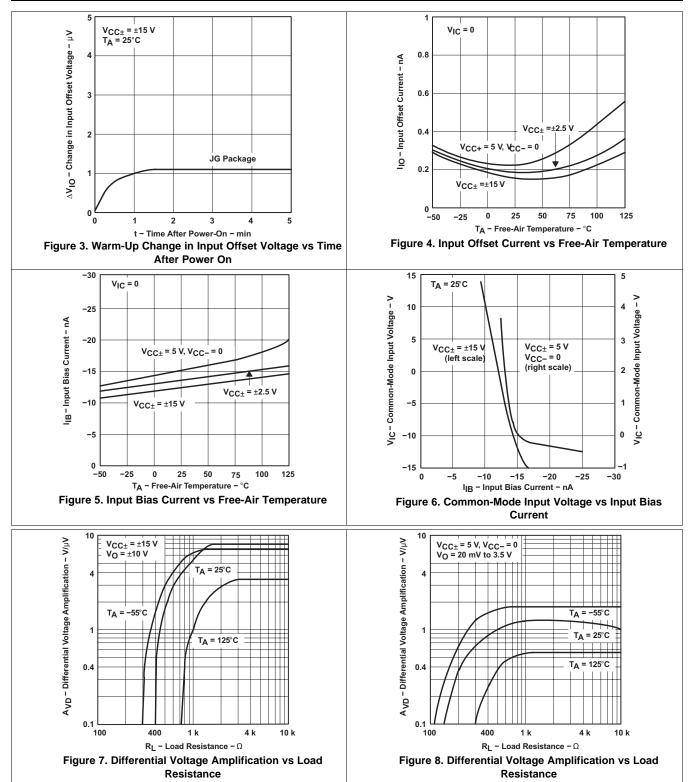
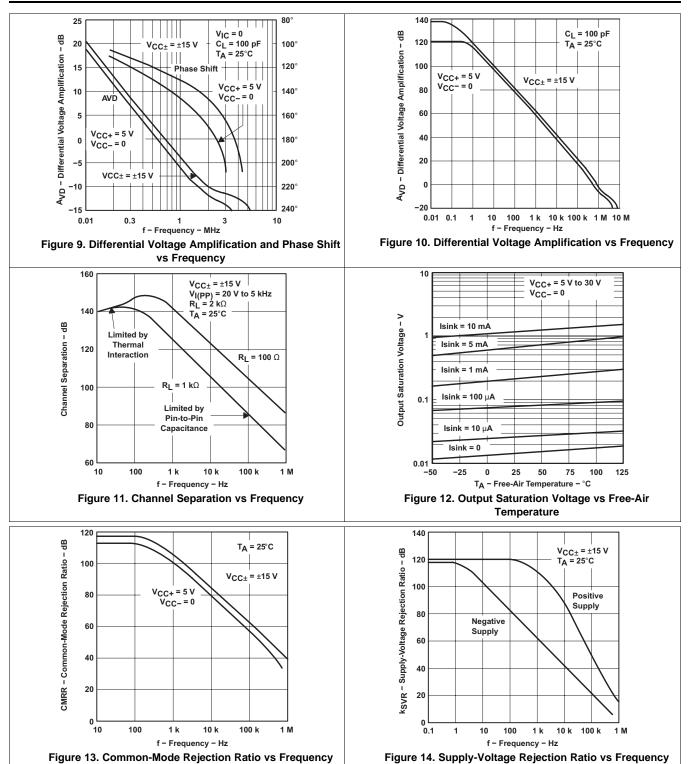
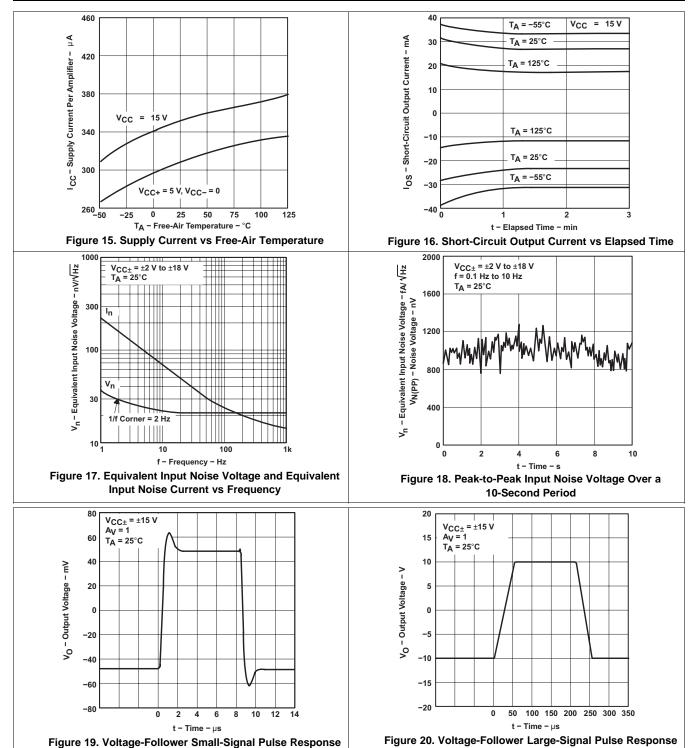
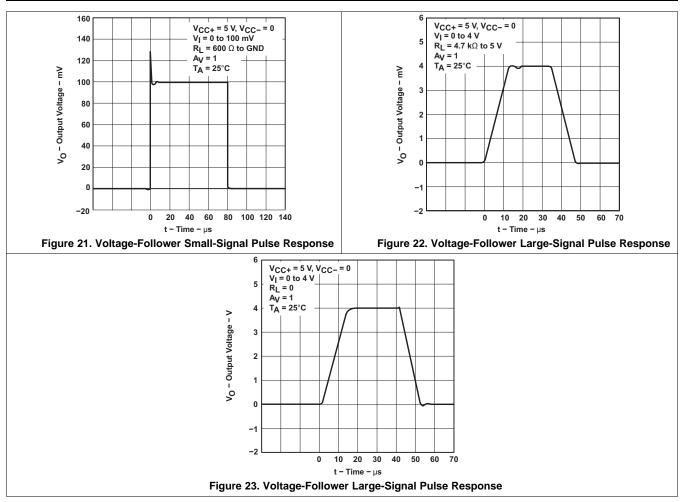

Table 1. Table of Graphs

			FIGURE
V	Innut offect veltors	vs Input Resistance	Figure 1
V _{IO}	Input offset voltage	vs Temperature	Figure 2
ΔV_{IO}	Change in input offset voltage	vs Time	Figure 3
I _{IO}	Input offset current	vs Temperature	Figure 4
I _{IB}	Input bias current	vs Temperature	Figure 5
V _{IC}	Common-mode input voltage	vs Input bias current	Figure 6
•		vs Load resistance	Figure 7, Figure 8
A _{VD}	Differential voltage amplification	vs Frequency	Figure 9, Figure 10
	Channel separation	vs Frequency	Figure 11
	Output saturation voltage	vs Temperature	Figure 12
CMRR	Common-mode rejection ratio	vs Frequency	Figure 13
k _{SVR}	Supply-voltage rejection ratio	vs Frequency	Figure 14
I _{CC}	Supply current	vs Temperature	Figure 15
l _{os}	Short-circuit output current	vs Time	Figure 16
V _n	Equivalent input noise voltage	vs Frequency	Figure 17
I _n	Equivalent input noise current	vs Frequency	Figure 17
V _{N(PP)}	Peak-to-peak input noise voltage	vs Time	Figure 18
	D. Jacobian and	Small signal	Figure 19, Figure 21
	Pulse response	Large signal	Figure 20, Figure 22, Figure 23
	Phase shift	vs Frequency	Figure 9


SLOS018I-MAY 1988-REVISED JULY 2016


LT1013, LT1013D, LT1013M, LT1013AM

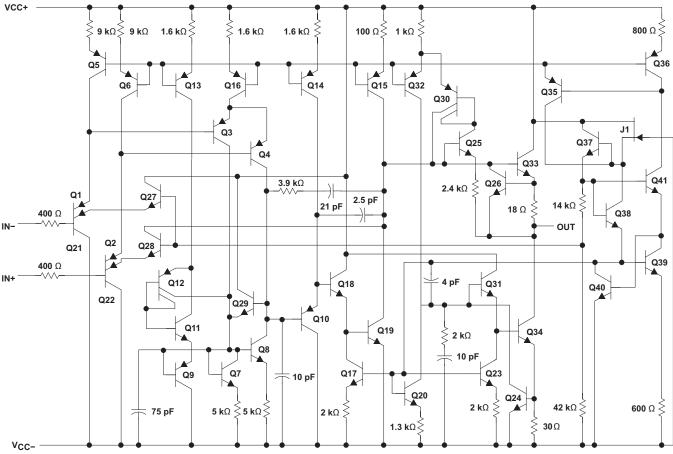
SLOS018I-MAY 1988-REVISED JULY 2016


SLOS018I-MAY 1988-REVISED JULY 2016

LT1013, LT1013D, LT1013M, LT1013AM

SLOS018I-MAY 1988-REVISED JULY 2016

Copyright © 1988–2016, Texas Instruments Incorporated



7 Detailed Description

7.1 Overview

The LT1013x device is a dual operational amplifier with low natural V_{IO} without programming memory that can be erased. There are no side effects from active V_{IO} correction used by other op amps. The LT1013x has built-in protection for input voltage below V_{CC-}. However, an external resistance must be add to protect the LT1013x from input voltage greater than V_{CC+}.

7.2 Functional Block Diagram

Component values are nominal.

Copyright © 2016, Texas Instruments Incorporated

LT1013, LT1013D, LT1013M, LT1013AM

SLOS018I-MAY 1988-REVISED JULY 2016

7.3 Feature Description

7.3.1 Input Resistors

For voltages less than V_{CC-} , a pair of 400- Ω resistors limit input current. These resistors have parasitic diodes to VCC+. Therefore, external series resistance is needed if input voltage exceed V_{CC+}

7.3.2 Output Stage

High output is provided by Q33 emitter for low output impedance. Q26 provides active current limiting for sourcing current.

Low output is provided by Q34 collector for lower output voltage near V_{CC-} rail. Q24 provides active current limiting for sinking current.

Copyright © 1988–2016, Texas Instruments Incorporated

Feature Description (continued)

7.3.3 Low-Supply Operation

The minimum supply voltage for proper operation of the LT1013x is 3.4 V (three NiCad batteries). Typical supply current at this voltage is 290 µA; therefore, power dissipation is only 1 mW per amplifier.

7.3.4 Output Phase Reversal Protection

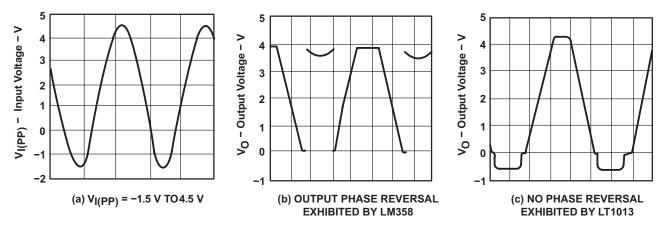
The LT1013x is fully specified for single-supply operation ($V_{CC-} = 0$). The common-mode input voltage range includes ground, and the output swings to within a few millivolts of ground.

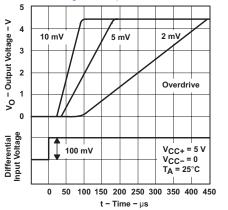
Furthermore, the LT1013x has specific circuitry that addresses the difficulties of single-supply operation, both at the input and at the output. At the input, the driving signal can fall below 0 V, either inadvertently or on a transient basis. If the input is more than a few hundred millivolts below ground, the LT1013x is designed to deal with the following two problems that can occur:

- 1. On many other operational amplifiers, when the input is more than a diode drop below ground, unlimited current flows from the substrate (VCC- terminal) to the input, which can destroy the unit. On the LT1013x, the 400- Ω resistors in series with the input protect the device, even when the input is 5 V below ground.
- 2. When the input is more than 400 mV below ground (at T_A = 25°C), the input stage of similar operational amplifiers saturates, and phase reversal occurs at the output. This can cause lockup in servo systems. Because of unique phase-reversal protection circuitry (Q21, Q22, Q27, and Q28), the LT1013x outputs do not reverse, even when the inputs are at −1.5 V (see Figure 24).

This phase-reversal protection circuitry does not function when the other operational amplifier on the LT1013x is driven hard into negative saturation at the output. Phase-reversal protection does not work on amplifier 1 when amplifier 2 output is in negative saturation nor on amplifier 2 when amplifier 1 output is in negative saturation.

At the output, other single-supply designs either cannot swing to within 600 mV of ground or cannot sink more than a few micro amperes while swinging to ground. The all-npn output stage of the LT1013x maintains its low output resistance and high-gain characteristics until the output is saturated. In dual-supply operations, the output stage is free of crossover distortion.




Figure 24. Voltage-Follower Response With Input Exceeding the Negative Common-Mode Input Voltage Range

Feature Description (continued)

7.3.4.1 Comparator Applications

The single-supply operation of the LT1013x is well suited for use as a precision comparator with TTL-compatible output. In systems using both operational amplifiers and comparators, the LT1013x can perform multiple duties (see Figure 25 and Figure 26).

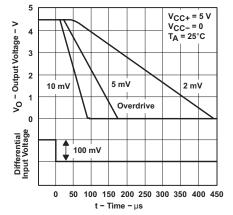


Figure 25. Low-to-High-Level Output Response for Figure 26. High-to-Low-Level Output Response for Various Input Overdrives

7.4 Device Functional Modes

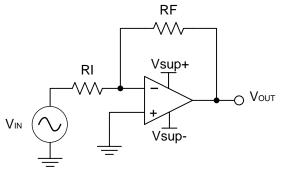
The LT1013x dual operational amplifier amplifies a differential voltage applied to the inputs.

TEXAS INSTRUMENTS

www.ti.com

8 Application and Implementation

NOTE


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LT1013x operational amplifiers are useful in a wide range of signal conditioning applications where high DC accuracy is needed.

8.2 Typical Application

A typical application for an operational amplifier in an inverting amplifier. This amplifier takes a positive voltage on the input and makes it a negative voltage of the same magnitude. In the same manner, it also makes negative voltages positive.

Copyright © 2016, Texas Instruments Incorporated

Figure 27. Application Schematic

8.2.1 Design Requirements

The supply voltage must be chosen such that it is larger than the input voltage range and output range. For instance, this application scales a signal of ± 0.5 V to ± 1.8 V. Setting the supply at ± 12 V is sufficient to accommodate this application.

8.2.2 Detailed Design Procedure

Determine the gain required by the inverting amplifier using Equation 1 and Equation 2:

$$A_{v} = \frac{VOUT}{VIN}$$
(1)
$$A_{v} = \frac{1.8}{-0.5} = -3.6$$
(2)

Once the desired gain is determined, choose a value for RI or RF. Choosing a value in the k Ω range is desirable because the amplifier circuit will use currents in the milliamp range. This ensures the part does not draw too much current. This example chooses 10 k Ω for RI, which means 36 k Ω is used for RF. This was determined by Equation 3.

$$A_{\nu} = -\frac{RF}{RI} \tag{3}$$

Typical Application (continued)

8.2.3 Application Curve

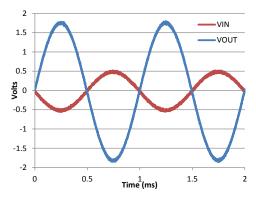


Figure 28. Input and Output Voltages of the Inverting Amplifier

9 Power Supply Recommendations

CAUTION

Supply voltages larger than 44 V for a single supply, or outside the range of ± 22 V for a dual supply can permanently damage the device (see *Absolute Maximum Ratings*).

Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high impedance power supplies. For more detailed information on bypass capacitor placement, see *Layout*.

10 Layout

10.1 Layout Guidelines

For best operational performance of the device, use quality PCB layout practices, including:

- Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the
 operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low impedance
 power sources local to the analog circuitry.
 - Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for singlesupply applications.
- Separate grounding for analog and digital portions of circuitry is one of the simplest and most effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds, paying attention to the flow of the ground current.
- Run the input traces as far away from the supply or output traces as possible to reduce parasitic coupling. If it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as opposed to in parallel with the noisy trace.
- Place the external components as close to the device as possible. Keeping RF and RG close to the inverting input minimizes parasitic capacitance, as shown in *Layout Guidelines*.
- Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit.
- Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.

Copyright © 1988–2016, Texas Instruments Incorporated

10.2 Layout Examples

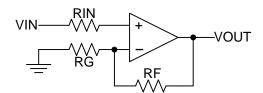


Figure 29. Operational Amplifier Schematic for Noninverting Configuration

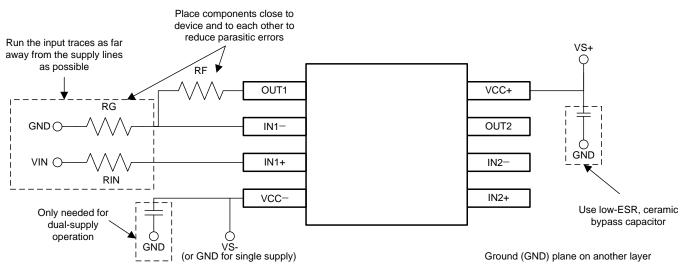


Figure 30. Operational Amplifier Board Layout for Noninverting Configuration

11 Device and Documentation Support

11.1 Device Support

11.1.1 Developmental Support

For developmental support, see the following:

LT1013-DIE

11.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
LT1013	Click here	Click here	Click here	Click here	Click here
LT1013D	Click here	Click here	Click here	Click here	Click here
LT1013M	Click here	Click here	Click here	Click here	Click here
LT1013AM	Click here	Click here	Click here	Click here	Click here
LT1013-DIE	Click here	Click here	Click here	Click here	Click here

Table 2. Related Links

11.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.5 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

11.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

12-Feb-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type		Pins		Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
5962-88760012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 88760012A LT1013AMFKB	Samples
5962-8876001PA	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	8876001PA LT1013AM	Samples
5962-88760022A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 88760022A LT1013MFKB	Samples
5962-8876002PA	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	8876002PA LT1013M	Samples
LT1013AMFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 88760012A LT1013AMFKB	Samples
LT1013AMJG	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	LT1013AMJG	Samples
LT1013AMJGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	8876001PA LT1013AM	Samples
LT1013AMP	OBSOLETI	e PDIP	Р	8		TBD	Call TI	Call TI	-55 to 125		
LT1013CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	1013C	Samples
LT1013CDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	1013C	Samples
LT1013CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	1013C	Samples
LT1013CDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	1013C	Samples
LT1013CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	1013C	Samples
LT1013CP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	LT1013CP	Samples
LT1013CPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	LT1013CP	Samples
LT1013DD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	1013D	Samples

PACKAGE OPTION ADDENDUM

12-Feb-2016

Orderable Device	Status	Package Type	Package Drawing	Pins		Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samp
	(1)	0010	U	0	Qty	(2)	(6)	(3)	0.1. 70	(4/5)	_
LT1013DDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	1013D	Samp
LT1013DDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	1013D	Samp
LT1013DDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	1013D	Samp
LT1013DDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	1013D	Samp
LT1013DID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	1013DI	Samj
LT1013DIDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	1013DI	Samj
LT1013DIDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	1013DI	Samj
LT1013DIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	1013DI	Sam
LT1013DIDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	1013DI	Sam
LT1013DIDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	1013DI	Sam
LT1013DIP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 105	LT1013DIP	Sam
LT1013DIPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 105	LT1013DIP	Sam
LT1013DMD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	1013DM	Sam
LT1013DMDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	1013DM	Sam
LT1013DP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	LT1013DP	Sam
LT1013DPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	LT1013DP	Sam
LT1013IP	OBSOLETE	PDIP	Р	8		TBD	Call TI	Call TI			
LT1013MFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 88760022A LT1013MFKB	Sam

12-Feb-2016

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LT1013MJG	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	LT1013MJG	Samples
LT1013MJGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	8876002PA LT1013M	Samples
LT1013MP	OBSOLETE	PDIP	Р	8		TBD	Call TI	Call TI	-55 to 125		
LT1013Y	OBSOLETE	DIESALE	Y	0		TBD	Call TI	Call TI			

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

12-Feb-2016

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF LT1013, LT1013M :

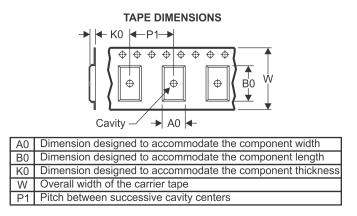
Catalog: LT1013

Military: LT1013M

NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product

• Military - QML certified for Military and Defense Applications

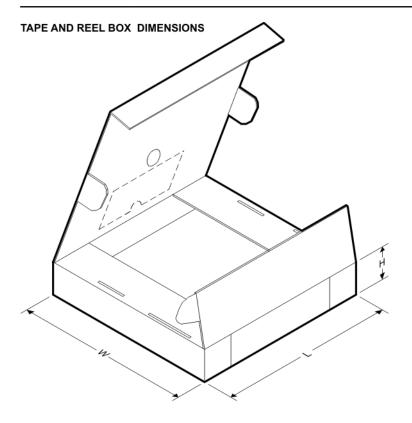

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensi	ions are nominal												
[Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LT1	I013CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LT1	1013DDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LT1	013DIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

12-Feb-2016

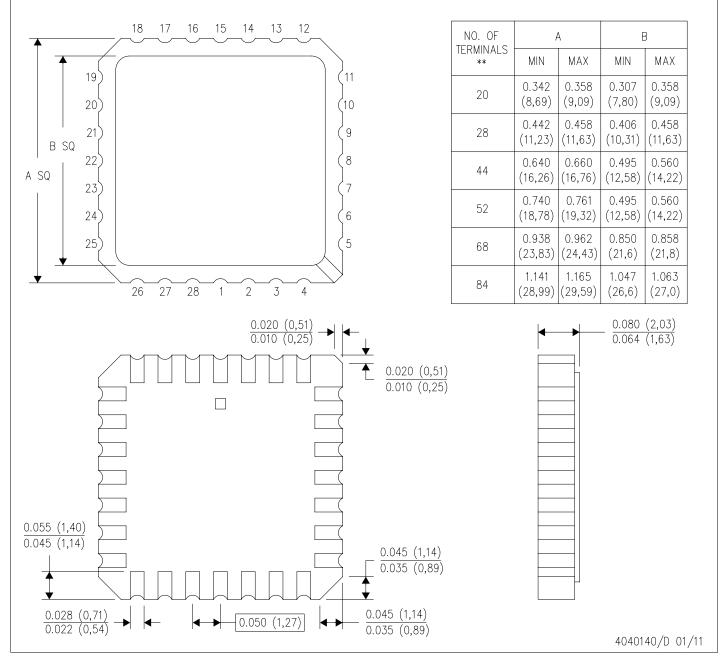
*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LT1013CDR	SOIC	D	8	2500	340.5	338.1	20.6
LT1013DDR	SOIC	D	8	2500	340.5	338.1	20.6
LT1013DIDR	SOIC	D	8	2500	340.5	338.1	20.6

MECHANICAL DATA

MCER001A - JANUARY 1995 - REVISED JANUARY 1997

CERAMIC DUAL-IN-LINE

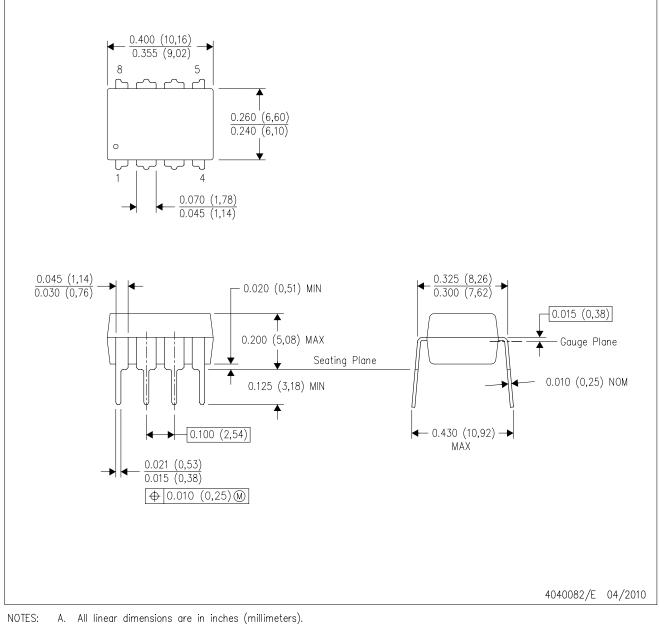

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N**) 28 TERMINAL SHOWN

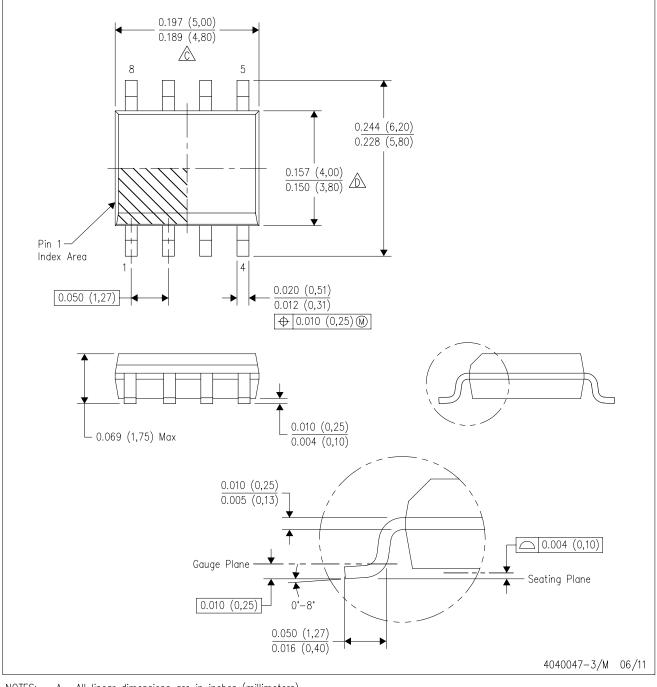
NOTES: A. All linear dimensions are in inches (millimeters).


B. This drawing is subject to change without notice.

- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

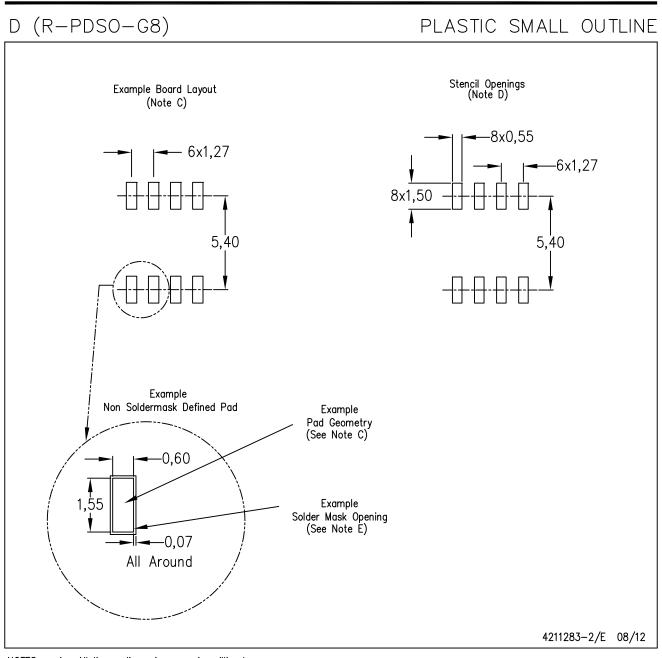
P(R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE



- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

D (R-PDSO-G8)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated