onsemi

Operational Amplifiers, High Slew Rate, Low Voltage, Rail-to-Rail Output

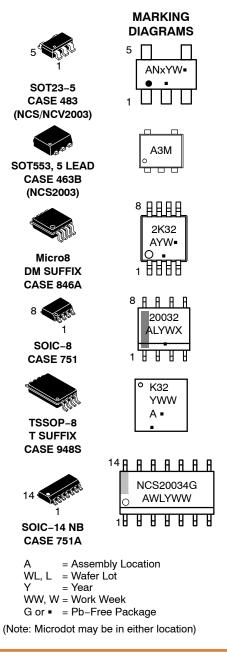
NCS2003/A, NCV2003, NCS20032, NCV20032, NCS20034, NCV20034

The NCS2003 family of op amps features high slew rate, low voltage operation with rail-to-rail output drive capability. The 1.8 V operation allows high performance operation in low voltage, low power applications. The fast slew rate and wide unity-gain bandwidth (5 MHz at 1.8 V) make these op amps suited for high speed applications. The low input offset voltage (4 mV max) allows the op amp to be used for current shunt monitoring. Additional features include no output phase reversal with overdriven inputs and ultra low input bias current of 1 pA.

The NCS2003 family is the ideal solution for a wide range of applications and products. The single channel NCS2003, dual channel NCS20032, and quad channel NCS20034 are available in a variety of compact and space–saving packages. The NCV prefix denotes that the device is AEC–Q100 Qualified and PPAP Capable.

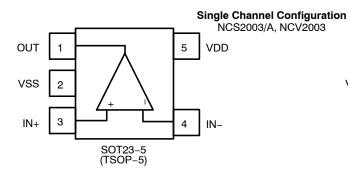
Features

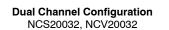
- Unity Gain Bandwidth: 7 MHz at $V_S = 5 V$
- Fast Slew Rate: 8 V/ μ s rising, 12.5 V/ μ s falling at V_S = 5 V
- Rail-to-Rail Output
- No Output Phase Reversal for Over-Driven Input Signals
- Low Offset Voltage: 0.5 mV typical
- Low Input Bias Current: 1 pA typical
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

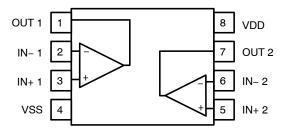

Applications

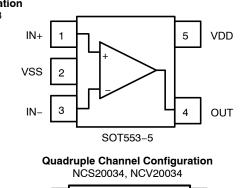
- Current Shunt Monitor
- Signal Conditioning
- Active Filter
- Sensor Buffer

End Products


- Motor Control Drives
- Hard Drives
- Medical Devices
- White Goods and Air Conditioners






ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 2 of this data sheet.

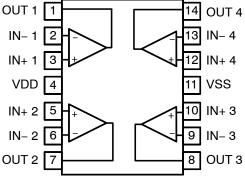


Figure 1. Pin Connections

ORDERING INFORMATION

Device	Configuration	Automotive	Marking	Package	Shipping [†]
NCS2003SN2T1G	Single	No	AN3	SOT23–5 (Pb–Free)	3000 / Tape and Reel
NCS2003ASN2T1G		No	AN4	SOT23–5 (Pb–Free)	3000 / Tape and Reel
NCS2003XV53T2G		No	A3	SOT553–5 (Pb–Free)	4000 /Tape and Reel
NCV2003SN2T1G*		Yes	AN3	SOT23–5 (Pb–Free)	3000 / Tape and Reel
NCS20032DMR2G	Dual	No	2K32	Micro8 (Pb–Free)	4000 / Tape and Reel
NCS20032DR2G			20032	SOIC-8 (Pb-Free)	2500 / Tape and Reel
NCS20032DTBR2G			K32	TSSOP-8 (Pb-Free)	3000 / Tape and Reel
NCV20032DMR2G*		Yes	2K32	Micro8 (Pb–Free)	4000 / Tape and Reel
NCV20032DR2G*			20032	SOIC-8 (Pb-Free)	2500 / Tape and Reel
NCV20032DTBR2G*			K32	TSSOP-8 (Pb-Free)	3000 / Tape and Reel
NCS20034DR2G	Quad	No	NCS20034G	SOIC-14 (Pb-Free)	2500 / Tape and Reel
NCV20034DR2G*		Yes	NCS20034G	SOIC-14 (Pb-Free)	2500 / Tape and Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature, unless otherwise stated

Parameter	Symbol	Limit	Unit
Supply Voltage (V _{DD} - V _{SS})	V _S	7.0	V
INPUT AND OUTPUT PINS			
Input Voltage (Note 1)	V _{IN}	V _{SS} – 0.3 to 7.0	V
Input Current	I _{IN}	10	mA
Output Short Current (Note 2)	I _O	100	mA
TEMPERATURE			
Storage Temperature	T _{STG}	-65 to 150	°C
Junction Temperature	TJ	150	°C
ESD RATINGS (Note 3)			

NCx2003, A	HBM	3000	V
			-
NCx20034		3000	
NCx2003 A	MM	200	V
			•
NGX20032		100	
NCx20034		150	
NCx2003, A	CDM	1000	V
NCx2003x		2000	
	NCx2003, A	NCx20032 NCx20034 NCx2003, A NCx20032 NCx20034 MM NCx20034 CDM	NCx20032 NCx20034 2000 3000 NCx2003, A NCx20032 NCx20034 MM 200 NCx20032 NCx20034 100 150 NCx2003, A CDM 1000

OTHER PARAMETERS

Moisture Sensitivity Level (Note 5)	MSL	Level 1	
Latch-up Current (Note 4)	ILU	100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Neither input should exceed the range of V_{SS} – 300 mV to 7.0 V. This device contains internal protection diodes between the input pins and V_{DD}. When V_{IN} exceeds V_{DD}, the input current should be limited to the specified value.

2. Indefinite duration; however, maximum package power dissipation limits must be observed to ensure that the maximum junction temperature is not exceeded.

3. This device series incorporates ESD protection and is tested by the following methods:

ESD Human Body Model tested per AEC-Q100-002 and JESD22-A114 ESD Machine Model tested per AEC-Q100-003 and JESD22-A115

ESD Machine Model tested per AEC-Q100-003 and JESD22-A113 ESD Charged Device Model tested per AEC-Q100-011 and ANSI/ESD S5.3.1-2009

4. Latch-up current tested per JEDEC Standard JESD78.

5. Moisture Sensitivity Level tested per IPC/JEDEC standard J-STD-020A.

THERMAL INFORMATION

Thermal Metric	Symbol	Package	Single Layer Board (Note 6)	Multi Layer Board (Note 7)	Unit
		SOT23-5/TSOP-5	408	355	
	Δ	SOT553-5	428	406	
Junction to Ambient		Micro8/MSOP8	235	163	0000
Thermal Resistance		SOIC-8	240	179	°C/W
			TSSOP-8	300	238
		SOIC-14	167	123	

6. Values based on a 1S standard PCB according to JEDEC51-3 with 1.0 oz copper and a 300 mm² copper area

7. Values based on a 1S2P standard PCB according to JEDEC51-7 with 1.0 oz copper and a 100 mm² copper area

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
Operating Supply Voltage (V _{DD} – V _{SS})	V _S	1.7	5.5	V
Specified Operating Range NCS2003, A NCV2003, NCx20032, NCx20034	T _A	-40 -40	+85 +125	°C
Input Common Mode Range	V _{CM}	V_{SS}	V _{DD} -0.6	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS: V_S = +1.8 V

At $T_A = +25^{\circ}$ C, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT}$ = midsupply, unless otherwise noted. **Boldface** limits apply over the specified temperature range. Guaranteed by design and/or characterization.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS	<u>.</u>					
Input Offset Voltage	V _{OS}	NCS2003A		0.5	3.0	mV
		NCx2003, NCx20032, NCx20034		0.5	4.0	mV
					5.0	mV
Offset Voltage Drift	$\Delta V_{OS} / \Delta T$			2.0		μV/°C
		NCS2003A (Note 8)			6.0	μV/°C
Input Bias Current	I _{IB}			1		pА
Input Offset Current	I _{OS}			1		pА
Channel Separation	XTLK	DC, NCx20032, NCx20034		100		dB
Input Resistance	R _{IN}			1		TΩ
Input Capacitance	C _{IN}			1.2		pF
Common Mode Rejection	CMRR	V_{IN} = V_{SS} to V_{DD} – 0.6 V	70	80		dB
Ratio		V_{IN} = V_{SS} + 0.2 V to $V_{DD} - 0.6$ V	65			

OUTPUT CHARACTERISTICS

Open Loop Voltage Gain	A _{VOL}	$R_L = 10 \ k\Omega$		80	92		dB
				75			
		$R_L = 2 k\Omega$			92		
				70			
Output Current Capability I _{SC}		Sourcing		5	8		mA
(Note 8)		Sinking		10	14		
Output Voltage High	V _{OH}	R _L = 10 kΩ		1.75	1.798		V
		$R_L = 2 k\Omega$		1.7	1.78		
Output Voltage Low	Vol	$R_L = 10 \ k\Omega$	NCx2003, A		7	50	mV
			NCx2003x		7	100	
		$R_L = 2 k\Omega$	•		20	100	

NOISE PERFORMANCE

Voltage Noise Density	e _N	f = 1 kHz	20	nV/√ Hz
Current Noise Density	i _N	f = 1 kHz	0.1	pA√Hz

DYNAMIC PERORMANCE

Gain Bandwidth Product	GBWP			5	MHz
Claur Data at Unity Cain	00	Rising Edge, $R_L = 2 k\Omega$, $A_V = +1$		6	
Siew Rate at Onity Gain	w Rate at Unity Gain SR Falling Edge, $R_L = 2 k\Omega$, $A_V = +1$		9	V/μs	
Phase Margin	Ψm	R_L = 10 k Ω , C_L = 5 pF		53	0
Gain Margin	A _m	$R_L = 10 \text{ k}\Omega, C_L = 5 \text{ pF}$	NCx2003, A	12	dB
			NCx2003x	8	
Settling Time	t _S	V _O = 1 Vpp, Gain = 1, C _L = 20 pF	Settling time to 0.1%	1.8	μs

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

8. Guaranteed by design and/or characterization.

ELECTRICAL CHARACTERISTICS: V_S = +1.8 V (continued)

At $T_A = +25^{\circ}C$, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT} = \text{midsupply}$, unless otherwise noted. **Boldface** limits apply over the specified temperature range. Guaranteed by design and/or characterization.

Parameter	Symbol	Conditions		Тур	Max	Unit
DYNAMIC PERORMANCE						
Total Harmonics Distortion + Noise	THD+N	V_{O} = 1 V_{pp} , R_{L} = 2 k Ω , A_{V} = +1, f = 1 kHz		0.005		%
Noise		V_{O} = 1 V_{pp} , R_{L} = 2 k Ω , A_{V} = +1, f = 10 kHz		0.025		

POWER SUPPLY

Power Supply Rejection Ratio	PSRR	NCx2003		72	80		dB
		-		65			
		NCx20032, NCx2	NCx20032, NCx20034		100		
Quiescent Current	I _{DD}	No load, per channel	NCx2003, A		230	560	μΑ
						1000	
			NCx20032,		275	375	
			NCx20034			575	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

8. Guaranteed by design and/or characterization.

ELECTRICAL CHARACTERISTICS: V_S = +5.0 V

At $T_A = +25^{\circ}$ C, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT}$ = midsupply, unless otherwise noted. **Boldface** limits apply over the specified temperature range. Guaranteed by design and/or characterization.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS	3					
Input Offset Voltage	V _{OS}	NCS2003A		0.5	3.0	mV
		NCx2003		0.5	4.0	mV
		NCx20032, NCx20034			5.0	mV
Offset Voltage Drift	$\Delta V_{OS} / \Delta T$			2.0		μV/°C
		NCS2003A (Note 9)			6.0	μV/°C
Input Bias Current	I _{IB}			1		pА
Input Offset Current	I _{OS}			1		pА
Channel Separation	XTLK	DC, NCx20032, NCx20034		100		dB
Input Resistance	R _{IN}			1		ТΩ
Input Capacitance	C _{IN}			1.2		pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

9. Guaranteed by design and/or characterization.

ELECTRICAL CHARACTERISTICS: V_S = +5.0 V (continued)

At $T_A = +25^{\circ}C$, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT}$ = midsupply, unless otherwise noted. Boldface limits apply over the specified temperature range. Guaranteed by design and/or characterization.

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
INPUT CHARACTERISTICS		·					
Common Mode Rejection Ratio	CMRR	NCx2003, A	$V_{IN} = V_{SS}$ to $V_{DD} - 0.6$ V	65	90		dB
			$V_{IN} = V_{SS} + 0.2 V$ to $V_{DD} - 0.6 V$	63			
		NCx20032, NCx20034	$V_{IN} = V_{SS}$ to $V_{DD} - 0.6$ V	70	90		
			$V_{IN} = V_{SS} + 0.2 V$ to $V_{DD} - 0.6 V$	65			

OUTPUT CHARACTERISTICS

Open Loop Voltage Gain	A _{VOL}	R _L = 1) kΩ	86	92		dB
				78			
		R _L = 2	kΩ	83	92		
				78			
Output Current Capability (Note 9)	I _{SC}	I _{SC} Sourcing		40	76		mA
		Sinking		50	96		
Output Voltage High	V _{OH}	R _L = 1	0 kΩ	4.95	4.99		V
		$R_L = 2 k\Omega$		4.9	4.97		
Output Voltage Low	Vol	$R_L = 10 \ k\Omega$	NCx2003, A		8	50	mV
			NCx2003x		8	100	1
		$R_L = 2 k\Omega$			24	100	1

NOISE PERFORMANCE

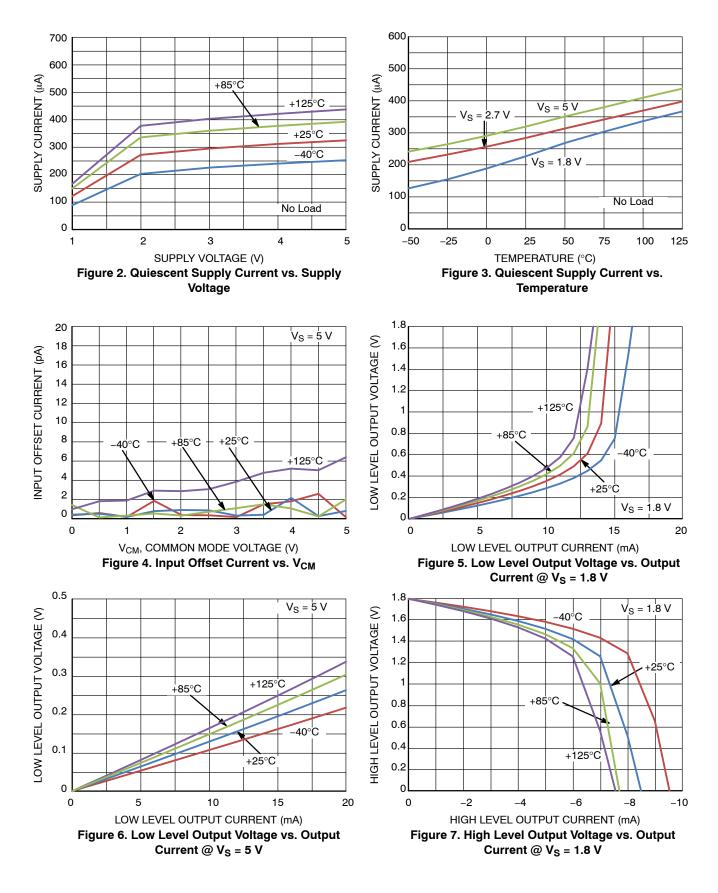
Voltage Noise Density	e _N	f = 1 kHz	20	nV/√Hz
Current Noise Density	i _N	f = 1 kHz	0.1	pA√Hz

DYNAMIC PERORMANCE

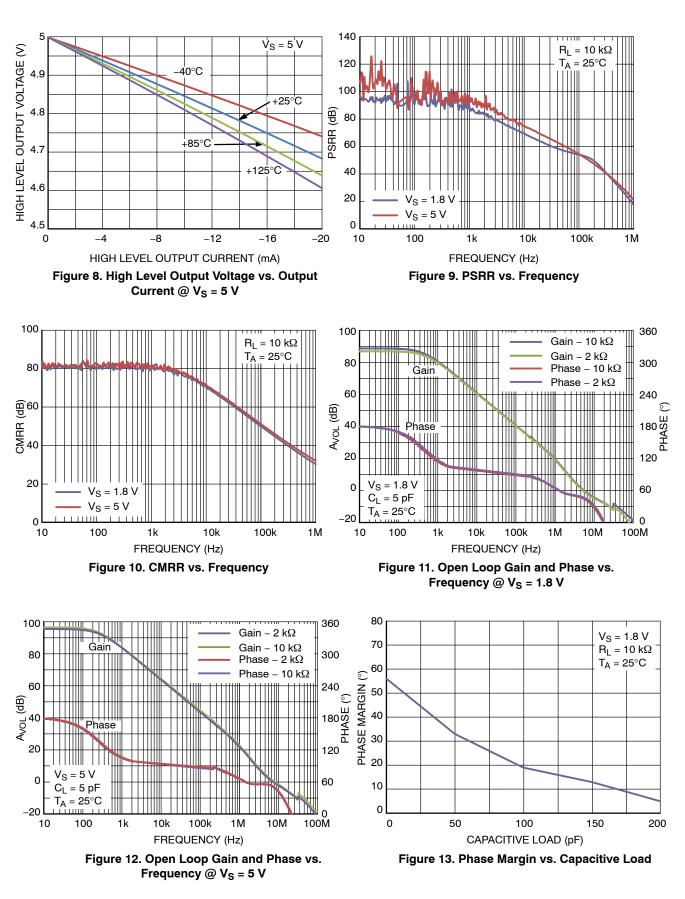
Gain Bandwidth Product	GBWP			7		MHz
Slew Rate at Unity Gain	SR	Rising Edge, $R_L = 2 k\Omega$, $AV = +1$		8		V/µs
		Falling Edge, R _L =	2 kΩ, AV = +1	12.	5	
Phase Margin	Ψm	$R_L = 10 \text{ k}\Omega, C_L = 5 \text{ pF}$	NCx2003, A	64		0
			NCx2003x	56		
Gain Margin	A _m	R _L = 10 kΩ, C	C _L = 5 pF	9		dB
Settling Time	t _S	V _O = 1 V _{pp} , Gain = 1, C _L = 20 pF	Settling time to 0.1%	0.6	;	μs
Total Harmonics Distortion +	THD+N	$V_{O} = 4 V_{pp}, R_{L} = 2 k\Omega,$	A _V = +1, f = 1 kHz	0.00	2	%
Noise		$V_{O} = 4 V_{pp}, R_{L} = 2 k\Omega, A$	A _V = +1, f = 10 kHz	0.0	1	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 9. Guaranteed by design and/or characterization.

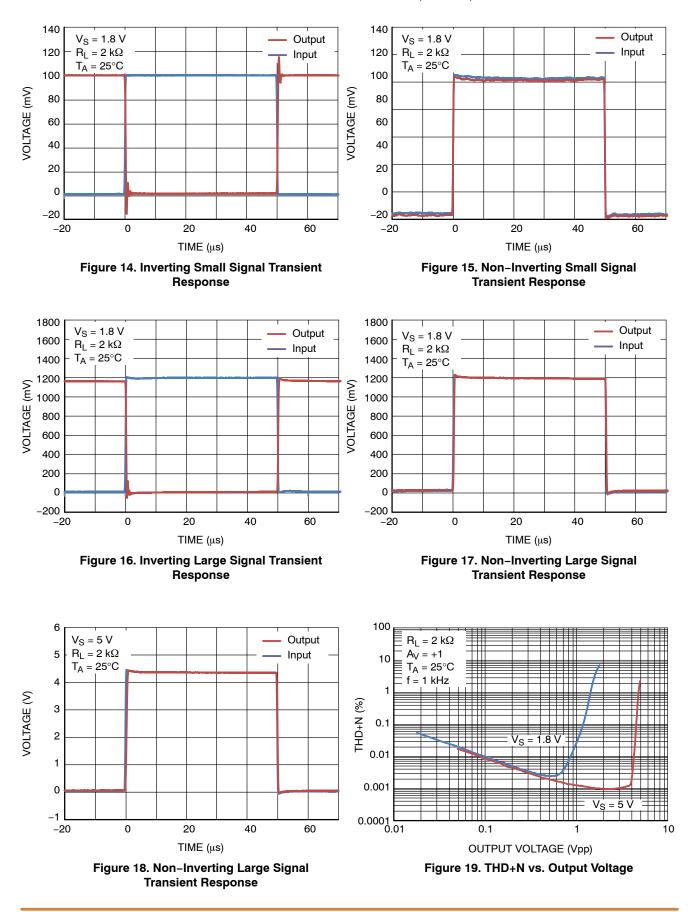
ELECTRICAL CHARACTERISTICS: V_S = +5.0 V (continued)


At $T_A = +25^{\circ}$ C, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT}$ = midsupply, unless otherwise noted. **Boldface** limits apply over the specified temperature range. Guaranteed by design and/or characterization.

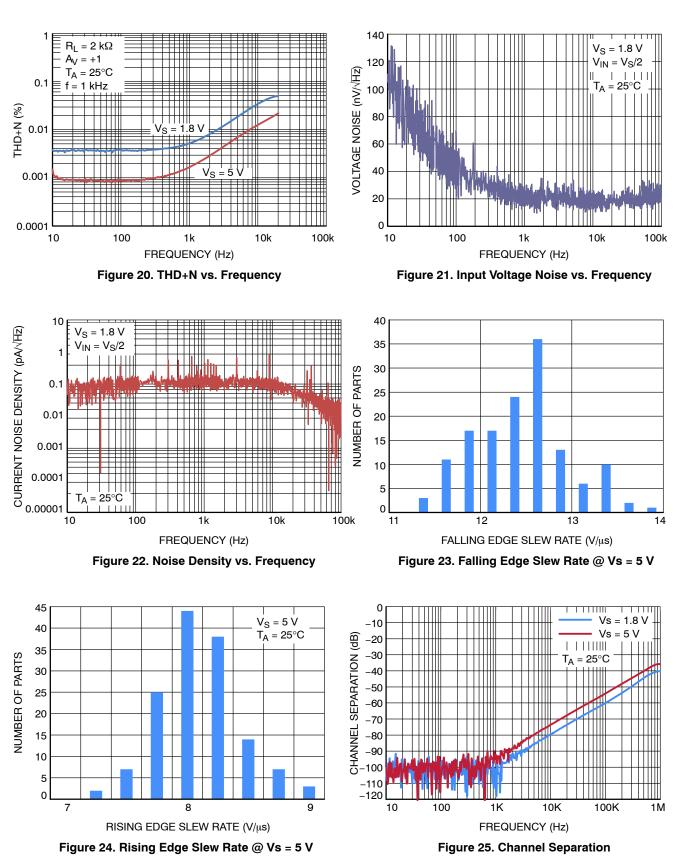
Parameter	Symbol	Conditions		Min	Тур	Max	Unit
POWER SUPPLY							
Power Supply Rejection Ratio	PSRR	NCx2003, A		72	80		dB
			65				
		NCx20032, NCx20034		80	100		
Quiescent Current	I _{DD}	No load, per channel	NCx2003, A		300	660	μΑ
						1000	
			NCx20032,		325	450	
			NCx20034				


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

675


9. Guaranteed by design and/or characterization.

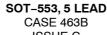
TYPICAL CHARACTERISTICS



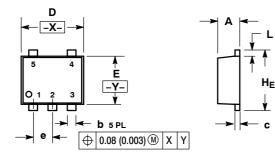
TYPICAL CHARACTERISTICS (Continued)

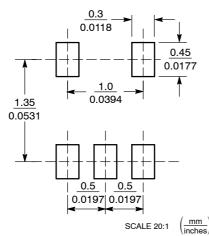
TYPICAL CHARACTERISTICS (Continued)

<u>www.onsemi.com</u> 10



TYPICAL CHARACTERISTICS (Continued)




SCALE 4:1

ISSUE C

RECOMMENDED **SOLDERING FOOTPRINT***

NOTES:

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	м	ILLIMETE	RS	INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.50	0.55	0.60	0.020	0.022	0.024
b	0.17	0.22	0.27	0.007	0.009	0.011
С	0.08	0.13	0.18	0.003	0.005	0.007
D	1.55	1.60	1.65	0.061	0.063	0.065
E	1.15	1.20	1.25	0.045	0.047	0.049
е		0.50 BSC			0.020 BSC)
L	0.10	0.20	0.30	0.004	0.008	0.012
HE	1.55	1.60	1.65	0.061	0.063	0.065

GENERIC **MARKING DIAGRAM***

XXM-

XX = Specific Device Code M = Date Code

= Pb-Free Package

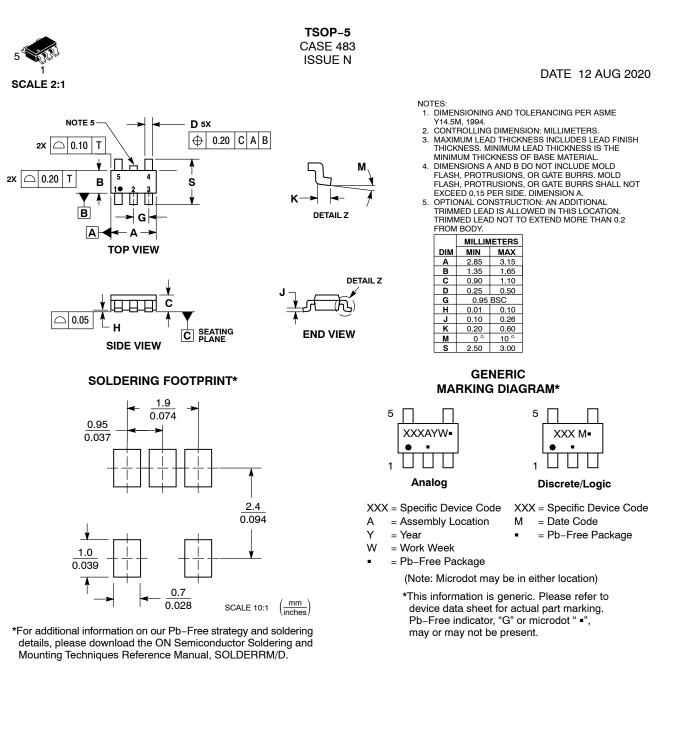
(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

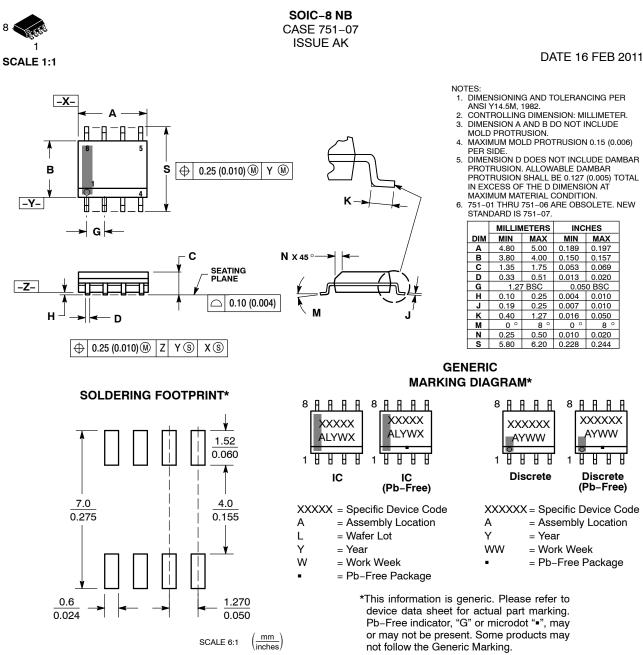
STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE	PIN 1. CATHODE	PIN 1. ANODE 1	PIN 1. SOURCE 1	PIN 1. ANODE
2. EMITTER	2. COMMON ANODE	2. N/C	2. DRAIN 1/2	2. EMITTER
3. BASE	3. CATHODE 2	3. ANODE 2	3. SOURCE 1	3. BASE
4. COLLECTOR	4. CATHODE 3	4. CATHODE 2	4. GATE 1	4. COLLECTOR
5. COLLECTOR	5. CATHODE 4	5. CATHODE 1	5. GATE 2	5. CATHODE
STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	
PIN 1. EMITTER 2	PIN 1. BASE	PIN 1. CATHODE	PIN 1. ANODE	
2. BASE 2	2. EMITTER	2. COLLECTOR	2. CATHODE	
3. EMITTER 1	3. BASE	3. N/C	3. ANODE	
4. COLLECTOR 1	4. COLLECTOR	4. BASE	4. ANODE	
5. COLLECTOR 2/BASE 1	5. COLLECTOR	5. EMITTER	5. ANODE	

DOCUMENT NUMBER:	98AON11127D	Electronic versions are uncontrolled except when				
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document Repository. Print versions are uncontrolled except when stamped				
NEW STANDARD:		"CONTROLLED COPY" in red.				
DESCRIPTION:	SOT-553, 5 LEAD		PAGE 1 OF 2			


DOCUMENT NUMBER: 98AON11127D

PAGE 2 OF 2

ISSUE	REVISION	DATE
Α	ADDED STYLES 3–9. REQ. BY D. BARLOW	11 NOV 2003
В	ADDED NOMINAL VALUES AND UPDATED GENERIC MARKING DIAGRAM. REQ. BY HONG XIAO	27 MAY 2005
С	UPDATED DIMENSIONS D, E, AND HE. REQ. BY J. LETTERMAN.	20 MAR 2013


ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product culd create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

DOCUMENT NUMBER:	98ARB18753C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	TSOP-5		PAGE 1 OF 1				
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or acidental damages. ON Semiconductor does not convey any license under	or guarantee regarding circuit, and specifically				

onsemí

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2				
the right to make changes without furth purpose, nor does onsemi assume ar	er notice to any products herein. onsemi make ny liability arising out of the application or use	LLC dba onsemi or its subsidiaries in the United States and/or other courses no warranty, representation or guarantee regarding the suitability of its proof any product or circuit, and specifically disclaims any and all liability, incle under its patent rights nor the rights of others.	oducts for any particular				

SOIC-8 NB CASE 751-07 **ISSUE AK**

STYLE 1: PIN 1. EMITTER COLLECTOR 2. 3. COLLECTOR 4. EMITTER 5. EMITTER BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE. DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. DRAIN 8. STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C REXT З. 4. GND 5. IOUT IOUT 6. IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE, #2 З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2 6.

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. 4 COLLECTOR, #2 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: GROUND PIN 1. BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6 BIAS 2 INPUT 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3 P-SOURCE P-GATE 4. P-DRAIN 5 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18: PIN 1. ANODE ANODE 2. SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. CATHODE 8. STYLE 22 PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3 COMMON CATHODE/VCC 4. I/O LINE 3 COMMON ANODE/GND 5. 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND STYLE 26: PIN 1. GND 2 dv/dt З. ENABLE 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: DRAIN 1 PIN 1. DRAIN 1 2 GATE 2 З. SOURCE 2 4 SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5.

6.

7.

8 GATE 1

SOURCE 1/DRAIN 2

STYLE 3: PIN 1. DRAIN, DIE #1 DRAIN, #1 2. DRAIN, #2 З. DRAIN, #2 4. GATE, #2 5. SOURCE, #2 6. 7 GATE #1 8. SOURCE, #1 STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS THIRD STAGE SOURCE GROUND З. 4. 5. DRAIN 6. GATE 3 SECOND STAGE Vd 7. FIRST STAGE Vd 8. STYLE 11: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. З. GATE 2 4. 5. DRAIN 2 6. DRAIN 2 DRAIN 1 7. 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 ANODE 1 3 ANODE 1 4. 5. CATHODE, COMMON CATHODE, COMMON CATHODE, COMMON 6. 7. CATHODE, COMMON 8. STYLE 19: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 MIRROR 1 8. STYLE 23: PIN 1. LINE 1 IN COMMON ANODE/GND COMMON ANODE/GND 2. 3 LINE 2 IN 4. LINE 2 OUT 5. COMMON ANODE/GND COMMON ANODE/GND 6. 7. 8. LINE 1 OUT STYLE 27: PIN 1. ILIMIT OVI O 2 UVLO З. 4. INPUT+ 5. 6. SOURCE SOURCE SOURCE 7. 8 DRAIN

DATE 16 FEB 2011

STYLE 4: PIN 1. 2. ANODE ANODE ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 З. BASE #2 COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. GATE 4. 5. DRAIN 6 DRAIN DRAIN 7. 8. DRAIN STYLE 16 EMITTER, DIE #1 PIN 1. 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE EMITTER 2. 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7. 8. COLLECTOR/ANODE STYLE 28: PIN 1. SW_TO_GND 2. DASIC OFF DASIC_SW_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK 8 VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED	
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2

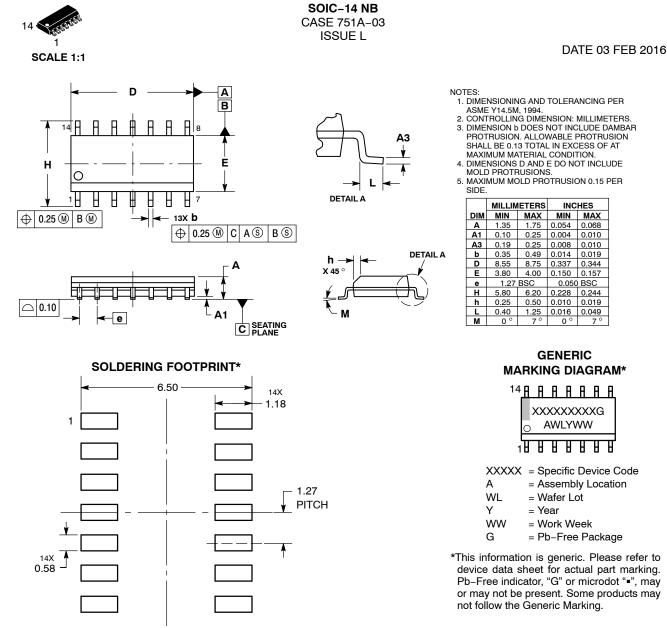
onsem and of isor in are trademarks or semiconductor compension instructions, the do onsem or its subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced stat purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

7.

8

COLLECTOR, #1

COLLECTOR, #1


DUSEM

0.068

0.019

0.344

0.244

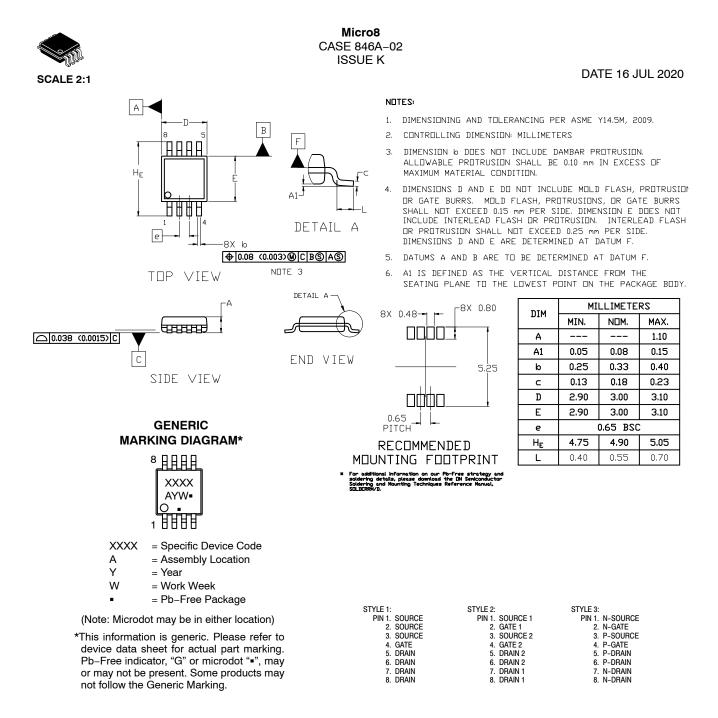
DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98ASB42565B Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOIC-14 NB PAGE 1 OF 2 onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

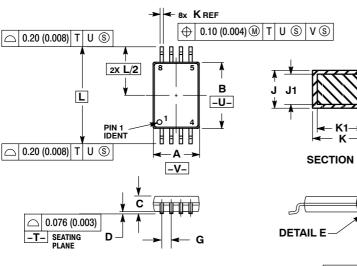
SOIC-14 CASE 751A-03 ISSUE L


DATE 03 FEB 2016

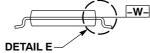
STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

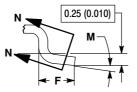
DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2

onsemi and ONSEMI: are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.


DOCUMENT NUMBER:	98ASB14087C	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED (
DESCRIPTION:	MICRO8		PAGE 1 OF 1
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product o acidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically

SCALE 2:1




TSSOP-8 CASE 948S-01 ISSUE C

DATE 20 JUN 2008

SECTION N-N

DETAIL E

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI

- VIMENSIONING AND TOLENANDING FER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH.
- PROTRUSION SHALL NOT EXCEED 0.15
 (0.006) PER SIDE.
 JIMENSION B DOES NOT INCLUDE INTERLEAD
 FLASH OR PROTRUSION. INTERLEAD FLASH OR
 PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
 DED SIDE. PER SIDE
- 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.114	0.122
В	4.30	4.50	0.169	0.177
С		1.10		0.043
D	0.05	0.15	0.002	0.006
F	0.50	0.70	0.020	0.028
G	0.65 BSC		0.026 BSC	
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
М	0°	8°	0°	8°

GENERIC **MARKING DIAGRAM***

S	XXX YWW	
	A •	
	•	

XXX = Specific Device Code А

- = Assembly Location
- = Year

Y

- WW = Work Week
- = Pb-Free Package -

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98AON00697D	Electronic versions are uncontrolled except when		
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document Re versions are uncontrolled except wh		
NEW STANDARD:		"CONTROLLED COPY" in red.		
DESCRIPTION:	TSSOP-8	F	PAGE 1 OF 2	

DOCUMENT NUMBER: 98AON00697D

PAGE 2 OF 2

100115		DATE
ISSUE	REVISION	DATE
0	RELEASED FOR PRODUCTION.	18 APR 2000
А	ADDED MARKING DIAGRAM INFORMATION. REQ. BY V. BASS.	13 JAN 2006
В	CORRECTED MARKING DIAGRAM PIN 1 LOCATION AND MARKING. REQ. BY C. REBELLO.	13 MAR 2006
С	REMOVED EXPOSED PAD VIEW AND DIMENSIONS P AND P1. CORRECTED MARKING INFORMATION. REQ. BY C. REBELLO.	20 JUN 2008

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative