

MH180 Hall-effect sensor is a temperature stable, stress-resistant sensor. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

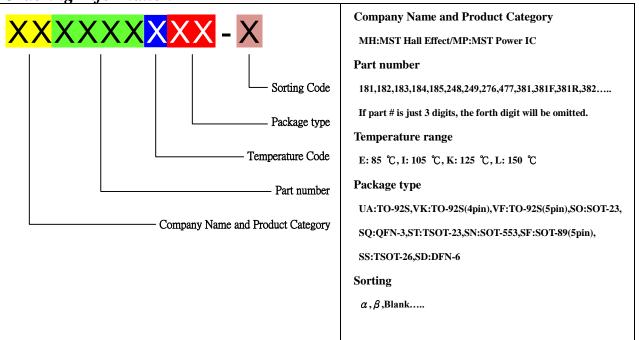
MH180 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, Advanced DMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output sensor on, and only switches off when a north polarity field of sufficient strength is present.

MH180 is rated for operation between the ambient temperatures -40°C and 85°C for the E temperature range, and -40°C to 125°C for the K temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package SO is an SOT-23, a miniature low-profile surface-mount package, while package UA is a three-lead ultra mini SIP for through-hole mounting.

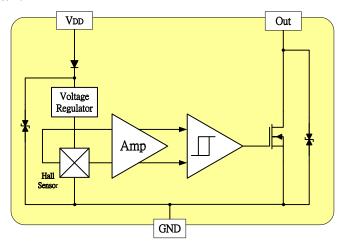
Packages is Halogen Free standard and which have been verified by third party lab.

Features and Benefits


- DMOS Hall IC Technology.
- Reverse bias protection on power supply pin.
- Chopper stabilized amplifier stage.
- Optimized for BLDC motor applications.
- Reliable and low shifting on high Temp condition.
- Good ESD Protection.
- 100% tested at 125 ℃ for K.
- Custom sensitivity / Temperature selection are available.

Applications

- High temperature Fan motor
- 3 phase BLDC motor application
- Speed sensing
- Position sensing
- Current sensing
- Revolution counting
- Solid-State Switch
- Linear Position Detection
- Angular Position Detection
- Proximity Detection
- High ESD Capability


Ordering Information

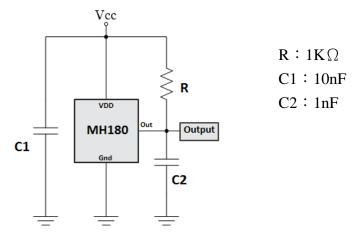
Part No.	Temperature Suffix	Package Type
MH180KUA	K $(-40^{\circ}\text{C to} + 125^{\circ}\text{C})$	UA (TO-92S)
MH180KSO	K $(-40^{\circ}\text{C to} + 125^{\circ}\text{C})$	SO (SOT-23)
MH180EUA	E $(-40^{\circ}\text{C to} + 85^{\circ}\text{C})$	UA (TO-92S)
MH180ESO	E $(-40^{\circ}\text{C to} + 85^{\circ}\text{C})$	SO (SOT-23)

KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

Functional Diagram

Absolute Maximum Ratings At (Ta=25 C)

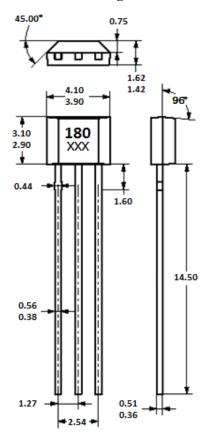
Characteristics			Values	Unit	
Supply voltage, (VDD)			28	V	
Output Voltage,(Vout)			28	V	
Reverse voltage, (VDD)			-28	V	
Magnetic flux density			Unlimited	Gauss	
Output current, (Iout)			50	mA	
Operating Temperature Range, (Ta)		"E" version	-40 to +85	°C	
		"K" version	-40 to +125	°C	
Storage temperature range, (<i>Ts</i>)			-65 to +150	С	
Maximum Junction Temp,(<i>Tj</i>)			150	С	
Thermal Resistance	$(\theta_{j}$	a) UA / SO	206 / 543	°C/W	
	(θ_{jc}) UA / SO		148 / 410	°C/W	
Package Power Dissipation, (P_D) UA/SO			606 / 230	mW	

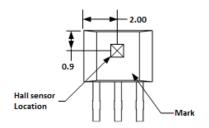

 $\textit{Note} : \textit{Do not apply reverse voltage to } V_{DD} \textit{ and } V_{OUT} \textit{ Pin, It may be caused for Miss function or damaged device.}$

Electrical Specifications

DC Operating Parameters : $T_A=+25 \text{ C}$, $V_{DD}=12V$

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage,(VDD)	Operating	2.5		24.0	V
Supply Current,(<i>I</i> _{DD})	B <bop< td=""><td></td><td></td><td>5.0</td><td>mA</td></bop<>			5.0	mA
Output Saturation Voltage, (Vsat)	Iout=20mA,B>BOP			400.0	mV
Output Leakage Current, (Ioff)	IOFF B <brp, vout="12V</td"><td></td><td></td><td>10.0</td><td>uA</td></brp,>			10.0	uA
Output Rise Time, (T_R)	RL=1.1K Ω , CL=20pF		0.04	0.45	uS
Output Fall Time, (T_F)	RL=820Ω; CL=20pF		0.18	0.45	uS
Electro-Static Discharge	НВМ	4			KV
Operate Point,(BoP)	UA(SO)		45		Gauss
Release Point,(BRP)	UA(SO)		-45		Gauss
Hysteresis,(BHYS)			90		Gauss


Typical application circuit Sensor Location, Package Dimension and Marking



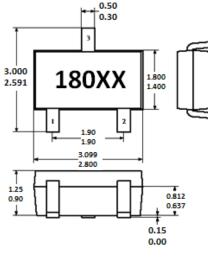
MH180 Package

UA Package

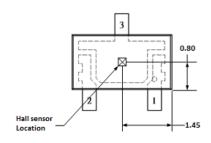
Hall Chip location

NOTES:

- 1).Controlling dimension: mm
- 2).Leads must be free of flash and plating voids
- Do not bend leads within 1 mm of lead to package interface.
- 4).PINOUT:


Pin 1	V_{DD}
Pin 2	GND
Pin 3	Output

Output Pin Assignment (Top view)



SO Package

(Top View)

Hall Plate Chip Location (Bottom view)

NOTES:

0.60

- 1. PINOUT (See Top View at left :)
 - $Pin \ 1 \qquad V_{DD}$
 - Pin 2 Output
 - Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum